Table 2.

. | Muscle strain (%) . | Shortening velocity (L s^{-1})
. | V/V_{max}
. |
---|---|---|---|

Frequency slope | 0.03^{**} | 0.08^{**} | 0.002^{**} |

Muscle mass slope | 0.21^{*} | 0.18^{**} | 0.01^{**} |

Intercept | 0.52 | -2.1^{**} | 0.09^{*} |

Adjusted r^{2} | 0.38 | 0.77 | 0.38 |

Overall F | 9.9^{**} | 50.6^{**} | 9.9^{**} |

. | Muscle strain (%) . | Shortening velocity (L s^{-1})
. | V/V_{max}
. |
---|---|---|---|

Frequency slope | 0.03^{**} | 0.08^{**} | 0.002^{**} |

Muscle mass slope | 0.21^{*} | 0.18^{**} | 0.01^{**} |

Intercept | 0.52 | -2.1^{**} | 0.09^{*} |

Adjusted r^{2} | 0.38 | 0.77 | 0.38 |

Overall F | 9.9^{**} | 50.6^{**} | 9.9^{**} |

Slope values for independent variables are unstandardised partial regression coefficients.

*L* s^{-1}=muscle lengths per second.

*V/V*_{max}=ratio of actual to maximum shortening velocity; *V*_{max} taken from Rome et al.(1996).

*N*=30.

Each slope indicates the bivariate relationship between the dependent variable and the particular independent variable when the other independent variable is held constant at the mean. For example, when muscle mass is held constant, contraction frequency significantly affects muscle strain with a slope of 0.03.

*

Significant at *P*<0.05.

**

Significant at *P*<0.01.

This site uses cookies. By continuing to use our website, you are agreeing to our privacy policy.