Calculation of the maximum bending stress of the claw
Term . | Equations . | Exocuticle . | Exocuticle+endocuticle . | Units . |
---|---|---|---|---|
D | 129.35 | μm | ||
d | 94.55 | 39.47 | μm | |
B | 129.35 | μm | ||
b | 17.38 | 44.92 | μm | |
H | 125.1 | μm | ||
h | 12.39 | 39.93 | μm | |
IA | \(I_{\mathrm{A}}=0.00686(D^{4}-d^{4})-\frac{0.0177D^{2}d^{2}(D-d)}{(D+d)}\) | 960667.09 | 1658113.70 | μm4 |
YA | \(Y_{\mathrm{A}}=\frac{2}{3{\pi}}\frac{D^{2}+Dd+d^{2}}{D+d}\) | 35.92 | 29.41 | μm |
IB | \(I_{\mathrm{B}}=\frac{Bh^{3}+2b(H-h)^{3}}{12}+Bh\left(Y_{\mathrm{B}}-\frac{h}{2}\right)^{2}+2b(H-h)\left(\frac{H-h}{2}+h-Y_{\mathrm{B}}\right)^{2}\) | 8618001.24 | 59474144.34 | μm4 |
YB | \(Y_{\mathrm{B}}=\frac{Bh^{2}+2b(H^{2}-h^{2})}{2[Bh+2b(H-h)]}\) | 50.586 | 114.62 | μm |
SA | \(S_{\mathrm{A}}=\frac{{\pi}}{8}(D^{2}-d^{2})\) | 3059.8 | 5958.64 | μm2 |
SB | \(S_{\mathrm{B}}=2b(H-h)+Bh\) | 5520.45 | 12816.62 | μm2 |
IT | \(I_{\mathrm{T}}=I_{\mathrm{A}}+S_{\mathrm{A}}(Y_{\mathrm{A}}+Y_{\mathrm{T}})^{2}+I_{\mathrm{B}}+S_{\mathrm{B}}(H-Y_{\mathrm{B}}-Y_{\mathrm{T}})^{2}\) | 10013484.52 | 67604619.72 | μm4 |
Critical | \(\frac{{\delta}I_{\mathrm{T}}}{{\delta}Y}=2S_{\mathrm{A}}(Y_{\mathrm{A}}+Y_{\mathrm{T}})+2S_{\mathrm{B}}(H-Y_{\mathrm{B}}-Y_{\mathrm{T}})(-1)=0\) | |||
YT | \(Y_{\mathrm{T}}=\frac{S_{\mathrm{B}}(H-Y_{\mathrm{B}})-S_{\mathrm{A}}Y_{\mathrm{A}}}{S_{\mathrm{A}}+S_{\mathrm{B}}}\) | 35.13 | -2.177 | μm |
Ymax | \(Y_{\mathrm{max}}=H-Y_{\mathrm{T}}\) | 89.97 | 127.277 | μm |
σmax | \({\sigma}_{\mathrm{max}}=\frac{M}{I_{\mathrm{max}}}Y_{\mathrm{max}}\) | 684.2 | 143.4 | N mm-2 |
Term . | Equations . | Exocuticle . | Exocuticle+endocuticle . | Units . |
---|---|---|---|---|
D | 129.35 | μm | ||
d | 94.55 | 39.47 | μm | |
B | 129.35 | μm | ||
b | 17.38 | 44.92 | μm | |
H | 125.1 | μm | ||
h | 12.39 | 39.93 | μm | |
IA | \(I_{\mathrm{A}}=0.00686(D^{4}-d^{4})-\frac{0.0177D^{2}d^{2}(D-d)}{(D+d)}\) | 960667.09 | 1658113.70 | μm4 |
YA | \(Y_{\mathrm{A}}=\frac{2}{3{\pi}}\frac{D^{2}+Dd+d^{2}}{D+d}\) | 35.92 | 29.41 | μm |
IB | \(I_{\mathrm{B}}=\frac{Bh^{3}+2b(H-h)^{3}}{12}+Bh\left(Y_{\mathrm{B}}-\frac{h}{2}\right)^{2}+2b(H-h)\left(\frac{H-h}{2}+h-Y_{\mathrm{B}}\right)^{2}\) | 8618001.24 | 59474144.34 | μm4 |
YB | \(Y_{\mathrm{B}}=\frac{Bh^{2}+2b(H^{2}-h^{2})}{2[Bh+2b(H-h)]}\) | 50.586 | 114.62 | μm |
SA | \(S_{\mathrm{A}}=\frac{{\pi}}{8}(D^{2}-d^{2})\) | 3059.8 | 5958.64 | μm2 |
SB | \(S_{\mathrm{B}}=2b(H-h)+Bh\) | 5520.45 | 12816.62 | μm2 |
IT | \(I_{\mathrm{T}}=I_{\mathrm{A}}+S_{\mathrm{A}}(Y_{\mathrm{A}}+Y_{\mathrm{T}})^{2}+I_{\mathrm{B}}+S_{\mathrm{B}}(H-Y_{\mathrm{B}}-Y_{\mathrm{T}})^{2}\) | 10013484.52 | 67604619.72 | μm4 |
Critical | \(\frac{{\delta}I_{\mathrm{T}}}{{\delta}Y}=2S_{\mathrm{A}}(Y_{\mathrm{A}}+Y_{\mathrm{T}})+2S_{\mathrm{B}}(H-Y_{\mathrm{B}}-Y_{\mathrm{T}})(-1)=0\) | |||
YT | \(Y_{\mathrm{T}}=\frac{S_{\mathrm{B}}(H-Y_{\mathrm{B}})-S_{\mathrm{A}}Y_{\mathrm{A}}}{S_{\mathrm{A}}+S_{\mathrm{B}}}\) | 35.13 | -2.177 | μm |
Ymax | \(Y_{\mathrm{max}}=H-Y_{\mathrm{T}}\) | 89.97 | 127.277 | μm |
σmax | \({\sigma}_{\mathrm{max}}=\frac{M}{I_{\mathrm{max}}}Y_{\mathrm{max}}\) | 684.2 | 143.4 | N mm-2 |