Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
TOC Section
Date
Availability
1-2 of 2
Keywords: recoil
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Experimental Biology
J Exp Biol (2015) 218 (21): 3360–3363.
Published: 1 November 2015
... compliance. In spite of large deflections of the perches and consequent substantial energy absorption, frogs were able to regain some of the energy lost to the perch during the recoil. Takeoff velocity was robust to changes in compliance, but was lower than when jumping from flat surfaces. This highlights...
Includes: Supplementary data
Journal Articles
Journal:
Journal of Experimental Biology
J Exp Biol (1992) 162 (1): 157–166.
Published: 1 January 1992
... musky. Large body depth also damps inertial recoil arising from the side force generated largely by the tail. Inertial energy losses appear to be more important contributors than friction to mechanical power requirements. Lighthill showed that energy wastage in recoil is large when ζ is large...