Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
TOC Section
Date
Availability
1-3 of 3
Keywords: Windkessel
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Experimental Biology
J Exp Biol (1991) 158 (1): 291–306.
Published: 1 July 1991
... that is only 3% of the cardiac cycle. Consequently, wave propagation effects seen in mammals, such as peripheral amplification, distortion and secondary pressure peaks due to reflections, are not apparent. Instead, the aorta acts as a simple Windkessel and inflation by the heart occurs almost simultaneously...
Journal Articles
Journal:
Journal of Experimental Biology
J Exp Biol (1990) 152 (1): 471–484.
Published: 1 September 1990
... and pressure wave transmission properties can be described by a two-element Windkessel model. Predictions of vascular impedance amplitude made from this model are presented. The effectiveness of the aorta as an elastic reservoir appears to be severely reduced during exercise in Octopus . Because blood pressure...
Journal Articles
Journal:
Journal of Experimental Biology
J Exp Biol (1987) 130 (1): 87–106.
Published: 1 July 1987
... as an elastic reservoir, as previously predicted. Aortic impedance spectra were derived from digitized pressure and flow data. The impedance amplitude decreased continuously with increasing frequency, while the impedance phase was always negative. These results are consistent with a two-element Windkessel model...