Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
TOC Section
Date
Availability
1-3 of 3
Keywords: Catch mechanism
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Experimental Biology
J Exp Biol (2017) 220 (21): 4047–4059.
Published: 1 November 2017
... and catch mechanisms to store and release elastic strain energy. Suction feeding sharks such as Chiloscyllium plagiosum lack large in-series tendons on the hypobranchials, yet two of the hypobranchials, the coracohyoideus and coracoarcualis (CH and CA; hyoid depressors), are arranged in-series, and run deep...
Includes: Supplementary data
Journal Articles
Journal:
Journal of Experimental Biology
J Exp Biol (2015) 218 (22): 3700–3709.
Published: 1 November 2015
... than it is stored, thus amplifying muscle power output. The period during which energy is loaded into a tendon by muscle work may be aided by a catch mechanism that restricts motion, but theoretical studies indicate that power can be amplified in a muscle–tendon load system even in the absence...
Journal Articles
Journal:
Journal of Experimental Biology
J Exp Biol (2014) 217 (24): 4372–4378.
Published: 15 December 2014
... the stored energy extremely rapidly. Many arthropods employ anatomical ‘catch mechanisms’ to lock the joint in place during the loading period, which can then be released to allow joint motion via elastic recoil. Jumping vertebrates lack a clear anatomical catch, yet face the same requirement to load...
Includes: Supplementary data