Insect pests, like the red flour beetle Tribolium castaneum, destroy up to 20% of stored grain products worldwide, making them a significant threat to food security. Their success hinges upon adapting their movements to unpredictable, heterogeneous environments like flour. Tribolium is well developed as a genetic model system; however, little is known about their natural locomotion and how their nervous systems coordinate adaptive movement. Here, we employed videographic whole-animal and leg tracking to assess how Tribolium larvae locomote over different substrates and analyze their gait kinematics across speeds. Unlike many hexapods, larvae employed a bilaterally symmetric, posterior-to-anterior wave gait during fast locomotion. At slower speeds, coordination within thoracic segments was disrupted, although intersegmental coordination remained intact. Moreover, larvae used terminal abdominal structures (pygopods) to support challenging movements, such as climbing overhangs. Pygopod placement coincided with leg swing initiation, suggesting a stabilizing role as adaptive anchoring devices. Surgically lesioning the connective between thoracic and abdominal ganglia impaired pygopod engagement and led to escalating impairments in flat-terrain locomotion, climbing and tunnelling. These results suggest that effective movement in Tribolium larvae requires thoracic-abdominal coordination, and that larval gait and limb recruitment is context-dependent. Our work provides the first kinematic analysis of Tribolium larval locomotion and gives insights into its neural control, creating a foundation for future motor control research in a genetically tractable beetle that jeopardizes global food security.
Context-dependent coordination of movement in Tribolium castaneum larvae
- Award Group:
- Funder(s): Institute for Behavioural and Neural Sciences, University of St Andrews
- Award Id(s): Undergraduate Research Assistant Scheme
- Funder(s):
Bella Xu Ying, Maarten F. Zwart, Stefan R. Pulver; Context-dependent coordination of movement in Tribolium castaneum larvae. J Exp Biol 2025; jeb.250015. doi: https://doi.org/10.1242/jeb.250015
Download citation file:
Advertisement
Cited by
Announcing the 2024 JEB Outstanding Paper Prize shortlist and winner

Every year JEB celebrates early-career researchers through the Outstanding Paper Prize. We recognise the shortlisted ECRS that contributed to 11 remarkable studies published in 2024 and congratulate the winner, Elise Laetz, from University of Groningen. See how else JEB supports and promotes ECRs.
Inside the Intergovernmental Panel on Climate Change with Hans-Otto Pörtner

During the past two decades, Hans-Otto Pörtner has steered climate change policy as a co-Chair of IPCC Working Group II. He tells us about the experience in this Perspective.
Photosynthesis turns symbiotic sea anemone's tentacles toward sun

Snakelocks sea anemones point their tentacles, packed with symbiotic algae, toward the sun so their lodgers can photosynthesize, and now Vengamanaidu Modepalli & colleagues have discovered that photosynthesis by the algae guides their host's tentacles towards the sun.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about JEB’s history and explore the journey of each of our sister journals: Development, Journal of Cell Science, Disease Models & Mechanisms and Biology Open.