Understanding how muscles use energy is essential for elucidating the role of skeletal muscle in animal locomotion. Yet, experimental measures of in vivo muscle energetics are challenging to obtain, so physiologically-based muscle models are often used to estimate energy use. These predictions of individual muscle energy expenditure are not often compared to indirect whole-body measures of energetic cost. Here, we examined and illustrated the capability of physiologically-based muscle models to predict in vivo measures of energy use, which rely on fundamental relationships between muscle mechanical state and energy consumption. To improve model predictions and ensure a physiological basis for model parameters, we refined our model to include data from isolated muscle experiments and account for inefficiencies in ATP recovery processes. Simulations were performed to capture three different experimental protocols, which involved varying contraction frequency, duty cycle, and muscle fascicle length. Our results demonstrated the ability of the model to capture the dependence of energetic cost on mechanical state across contractile conditions, but tended to under predict the magnitude of energetic cost. Our analysis revealed that the model was most sensitive to the force-velocity parameters and the data informing the energetic parameters when predicting in vivo energetic rates. This work highlights it is the mechanics of skeletal muscle contraction that govern muscle energy use, although the precise physiological parameters for human muscle likely require detailed investigation.
Using physiologically-based models to predict in vivo skeletal muscle energetics
- Award Group:
- Funder(s): Australian Research Council
- Award Id(s): DP230101886
- Funder(s):
- Award Group:
- Funder(s): Australian Research Council
- Award Id(s): FTFT190100129
- Funder(s):
Ryan N. Konno, Glen A. Lichtwark, Taylor J. M. Dick; Using physiologically-based models to predict in vivo skeletal muscle energetics. J Exp Biol 2025; jeb.249966. doi: https://doi.org/10.1242/jeb.249966
Download citation file:
Advertisement
Cited by
Announcing the 2024 JEB Outstanding Paper Prize shortlist and winner

Every year JEB celebrates early-career researchers through the Outstanding Paper Prize. We recognise the shortlisted ECRS that contributed to 11 remarkable studies published in 2024 and congratulate the winner, Elise Laetz, from University of Groningen. See how else JEB supports and promotes ECRs.
Inside the Intergovernmental Panel on Climate Change with Hans-Otto Pörtner

During the past two decades, Hans-Otto Pörtner has steered climate change policy as a co-Chair of IPCC Working Group II. He tells us about the experience in this Perspective.
Photosynthesis turns symbiotic sea anemone's tentacles toward sun

Snakelocks sea anemones point their tentacles, packed with symbiotic algae, toward the sun so their lodgers can photosynthesize, and now Vengamanaidu Modepalli & colleagues have discovered that photosynthesis by the algae guides their host's tentacles towards the sun.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about JEB’s history and explore the journey of each of our sister journals: Development, Journal of Cell Science, Disease Models & Mechanisms and Biology Open.