Many animals undergo prolonged dormancy periods to survive cold or dry environments. While humans and most laboratory-based mammals experience a loss of neuromuscular function during inactivity, hibernators possess physiological mechanisms to mitigate this loss. The American bullfrog provides an extreme model of this phenomenon, as brainstem circuits that generate breathing are completely inactive during underwater hibernation, during which motoneurons employ various types of synaptic plasticity to ensure adequate respiratory motor output in the spring. In addition to synapses, voltage-gated ion channels may undergo plasticity to boost neuronal output. Therefore, we hypothesized that motoneuron excitability would also be enhanced after hibernation via alterations in voltage-gated ion channels. We used whole-cell patch clamp electrophysiology to measure membrane excitability and activities of several voltage-gated channels (K+, Ca2+, Na+) from motoneurons that innervate muscles of the buccal pump (hypoglossal) and glottal dilator (vagal). Surprisingly, compared to controls, overwintered hypoglossal motoneurons displayed multiple indices of reduced excitability (hyperpolarized resting membrane potential, lower firing rates, greater lag to first spike). Mechanistically, this occurred via enhanced voltage-gated K+ and reduced Ca2+ channel activity. In contrast, vagal motoneurons excitability was unaltered, but exhibited altered ion channel profiles which seemed to stabilize neuronal output, involving either reduced Ca2+ or K+ currents. Therefore, different motoneurons of the same neuromuscular behavior respond differently to overwintering by altering the function of voltage-gated channels. We suggest divergent responses may reflect different energetic demands of these neurons and/or their specific contribution to breathing and other orofacial behaviors.
Plasticity in voltage-gated ion channels following overwintering in respiratory motoneurons of American bullfrogs
- Award Group:
- Funder(s): National Institutes of Health
- Award Id(s): R01NS114514
- Funder(s):
Renato Filogonio, Sandy E. Saunders, Michael Gray, Jose A. Viteri, Joseph M. Santin; Plasticity in voltage-gated ion channels following overwintering in respiratory motoneurons of American bullfrogs. J Exp Biol 2025; jeb.249687. doi: https://doi.org/10.1242/jeb.249687
Download citation file:
Advertisement
Cited by
Announcing the 2024 JEB Outstanding Paper Prize shortlist and winner

Every year JEB celebrates early-career researchers through the Outstanding Paper Prize. We recognise the shortlisted ECRS that contributed to 11 remarkable studies published in 2024 and congratulate the winner, Elise Laetz, from University of Groningen. See how else JEB supports and promotes ECRs.
Inside the Intergovernmental Panel on Climate Change with Hans-Otto Pörtner

During the past two decades, Hans-Otto Pörtner has steered climate change policy as a co-Chair of IPCC Working Group II. He tells us about the experience in this Perspective.
Photosynthesis turns symbiotic sea anemone's tentacles toward sun

Snakelocks sea anemones point their tentacles, packed with symbiotic algae, toward the sun so their lodgers can photosynthesize, and now Vengamanaidu Modepalli & colleagues have discovered that photosynthesis by the algae guides their host's tentacles towards the sun.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about JEB’s history and explore the journey of each of our sister journals: Development, Journal of Cell Science, Disease Models & Mechanisms and Biology Open.