While landing on flowers, pollinating insects often have to deal with flower movement caused by wind. Here, we determined the landing performance of bumblebees on a moving artificial flower, and how they use their visual-motor system to control their landings. To do this, we built an experimental setup containing a physical model of a flower, moving sideways using sinusoidal kinematics at various oscillation frequencies (up to 0.65 Hz, at constant amplitude of 5 cm). We filmed the landings of Bombus terrestris bumblebees on this moving flower model and extracted the flight kinematics and trajectories using deep neural network-based videography tracking. The bumblebees were capable of compensating for the detrimental effects of flower movement on landing performance for flower frequencies up to 0.53 Hz. Only at our maximum frequency of 0.65 Hz, the percentage of successful landings decreased, but landing accuracy and duration were not affected. To successfully land on the moving flower, the bumblebees gradually slowed down, aimed towards the middle of the flower and aligned with its movement. Our results indicated that bumblebees use modular visual-motor control feedback to do this: (1) they slow down by maintaining an approximately constant average optic expansion of the approaching flower image; (2) they aim towards the flower by keeping the flower in the middle of their view; (3) they align to the flower movement by minimizing the sideways optic flow of the moving flower image. Our findings increase our understanding of how flying insects land on flowers moved by wind.
Follow the flower: approach-flight behaviour of bumblebees landing on a moving target
- Award Group:
- Funder(s): Wageningen Institute of Animal Sciences, Wageningen University and Research
- Funder(s):
- Award Group:
- Funder(s): Dr. J.L. Dobberke Foundation
- Funder(s):
Lana J. de Vries, Frank van Langevelde, Johan L. van Leeuwen, Marc Naguib, Remco P. M. Pieters, Florian T. Muijres; Follow the flower: approach-flight behaviour of bumblebees landing on a moving target. J Exp Biol 2025; jeb.249380. doi: https://doi.org/10.1242/jeb.249380
Download citation file:
Advertisement
Cited by
Announcing the 2024 JEB Outstanding Paper Prize shortlist and winner

Every year JEB celebrates early-career researchers through the Outstanding Paper Prize. We recognise the shortlisted ECRS that contributed to 11 remarkable studies published in 2024 and congratulate the winner, Elise Laetz, from University of Groningen. See how else JEB supports and promotes ECRs.
Inside the Intergovernmental Panel on Climate Change with Hans-Otto Pörtner

During the past two decades, Hans-Otto Pörtner has steered climate change policy as a co-Chair of IPCC Working Group II. He tells us about the experience in this Perspective.
Photosynthesis turns symbiotic sea anemone's tentacles toward sun

Snakelocks sea anemones point their tentacles, packed with symbiotic algae, toward the sun so their lodgers can photosynthesize, and now Vengamanaidu Modepalli & colleagues have discovered that photosynthesis by the algae guides their host's tentacles towards the sun.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about JEB’s history and explore the journey of each of our sister journals: Development, Journal of Cell Science, Disease Models & Mechanisms and Biology Open.