To decide whether to remain underground or to emerge from overwintering, fossorial ectotherms simultaneously process environmental, gravitational, and circannual migratory cues. Here, we provide an experimental framework to study the behaviour of fossorial ectotherms during soil temperature inversion—a phenomenon that marks the transition between winter and spring—based on three non-mutually exclusive hypotheses (thermoregulatory, negative geotaxis, and migration restlessness). Using a vertical thermal gradient, we evaluated how temperature selection (Tsel), activity, and vertical position selection differed under simulated soil temperature inversion (contrasting the active vs. overwintering thermal gradients) in the Spotted Salamander (Ambystoma maculatum). Salamanders had different Tsel and activity levels between gradients, but selected similar heights regardless of thermal gradient orientation. Negative geotaxis may explain responses to changes in vertical thermal gradient orientation, with migratory restlessness contributing to differences in activity levels. Ultimately, our work should benefit those who aim to better understand the biology of fossorial ectotherms.
Ups and downs of fossorial life: migration restlessness and geotaxis may explain overwintering emergence in the Spotted Salamander
- Award Group:
- Funder(s): Natural Sciences and Engineering Research Council of Canada
- Award Id(s): RGPIN-2020-05089
- Funder(s):
- Award Group:
- Funder(s): Society for the Study of Amphibians and Reptiles
- Award Id(s): Roger Conant Grant-in-Herpetology
- Funder(s):
Danilo Giacometti, Patrick D. Moldowan, Glenn J. Tattersall; Ups and downs of fossorial life: migration restlessness and geotaxis may explain overwintering emergence in the Spotted Salamander. J Exp Biol 2024; jeb.249319. doi: https://doi.org/10.1242/jeb.249319
Download citation file:
Advertisement
Cited by
Call for Papers: The Integrative Biology of the Gut. Guest Editors Carol Bucking, Matt Regan and John Terblanche
We are pleased to welcome submissions for our upcoming Special Issue: The Integrative Biology of the Gut . We are calling for forward-looking papers that address the functional roles of the gut. We will consider papers that address gut function from the cellular level to its interactions with other organs and tissues, including its role in diverse ecophysiological processes, spanning both vertebrate and invertebrate species. The deadline for submission to this issue is 1 October 2024.
Sensory perception in a changing world – join us in Liverpool in March 2025
We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the JEB Symposium Sensory Perception in a Changing World and the SEB satellite meeting. Find out more and register to join us in March 2025 in Liverpool, UK. Submit your abstract by 13 December 2024. Early-bird registration ends on 17 January 2025.
Extraordinary creatures: raptors
In our new Conversation focusing on extraordinary creatures, Simon Potier tells us about raptors, from peregrine falcons and eagles to vultures and owls, discussing their lifestyles, incredible sensory abilities and conservation successes.
Ultraviolet radiation: a neglected stressor
Although ultraviolet radiation (UVR) is pervasive and can alter the effects of other stressors in the environment, ecophysiologists rarely discuss or include UVR in their experimental design. In this Commentary, Coen Hird and colleagues provide a guide for experimental biologists to better understand if, when, and how UVR can be integrated into study designs to improve the ecological realism of their research.
Turkey vultures defy thin air by flying faster
Turkey vultures successfully fly at high altitude despite the challenge of generating lift in thin air, but how? Jonathan Rader & Ty Hedrick discovered that the birds fly 1m/s faster at 2200m than at sea level to generate sufficient lift to remain aloft.