Escape jet propulsion swimming in cuttlefish (Sepia officinalis) is powered by the circular muscles surrounding the mantle cavity. This mode of locomotion is energetically costly compared to undulatory swimmers. The energetic cost of swimming is determined by the mechanical power requirements and the efficiency with which chemical energy is transferred into useful mechanical work. One step in this energy transduction process is the transfer of energy from ATP hydrolysis into mechanical work by the muscles. Here, we determined the efficiency of this step, termed the contractile efficiency. Muscle preparations from the circular muscles of the mantle cavity were subjected to sinusoidal length changes at different cycle frequencies, and stimulated with a phase and duration that maximised initial net work. Changes in ATP, arginine phosphate and octopine content between control and exercised muscles were determined and used to calculate the energy released from ATP hydrolysis (Emet). The maximum contractile efficiency (the ratio of net work to Emet) was 0.37, occurring at the same cycle frequency at which mechanical power was maximal and that was used during jet propulsion swimming, suggesting that cuttlefish muscle is adapted to generate muscular power efficiently. The overall efficiency of cuttlefish jet propulsion swimming was estimated to be 0.17, which is broadly comparable to that measured during animal flight and human-powered pedalled locomotion, indicating the high energetic costs of jet propulsion swimming are not due to inefficient locomotion per se, instead, they result from the relatively high mechanical power requirements.
The contractile efficiency of the mantle muscle of European common cuttlefish (Sepia officinalis) during cyclical contractions
Present address: Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
Nicholas W. Gladman, Graham N. Askew; The contractile efficiency of the mantle muscle of European common cuttlefish (Sepia officinalis) during cyclical contractions. J Exp Biol 2024; jeb.249297. doi: https://doi.org/10.1242/jeb.249297
Download citation file:
Advertisement
Cited by
Call for Papers: The Integrative Biology of the Gut. Guest Editors Carol Bucking, Matt Regan and John Terblanche
We are pleased to welcome submissions for our upcoming Special Issue: The Integrative Biology of the Gut . We are calling for forward-looking papers that address the functional roles of the gut. We will consider papers that address gut function from the cellular level to its interactions with other organs and tissues, including its role in diverse ecophysiological processes, spanning both vertebrate and invertebrate species. The deadline for submission to this issue is 1 October 2024.
Sensory perception in a changing world – join us in Liverpool in March 2025
We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the JEB Symposium Sensory Perception in a Changing World and the SEB satellite meeting. Find out more and register to join us in March 2025 in Liverpool, UK. Submit your abstract by 13 December 2024. Early-bird registration ends on 17 January 2025.
Extraordinary creatures: raptors
In our new Conversation focusing on extraordinary creatures, Simon Potier tells us about raptors, from peregrine falcons and eagles to vultures and owls, discussing their lifestyles, incredible sensory abilities and conservation successes.
Ultraviolet radiation: a neglected stressor
Although ultraviolet radiation (UVR) is pervasive and can alter the effects of other stressors in the environment, ecophysiologists rarely discuss or include UVR in their experimental design. In this Commentary, Coen Hird and colleagues provide a guide for experimental biologists to better understand if, when, and how UVR can be integrated into study designs to improve the ecological realism of their research.
Turkey vultures defy thin air by flying faster
Turkey vultures successfully fly at high altitude despite the challenge of generating lift in thin air, but how? Jonathan Rader & Ty Hedrick discovered that the birds fly 1m/s faster at 2200m than at sea level to generate sufficient lift to remain aloft.