Our current understanding of human gait is mostly based on studies using hard, level surfaces in a laboratory environment. However, humans navigate a wide range of different substrates every day, which incur varied demands on stability and efficiency. Several studies have shown that when walking on natural compliant substrates there is an increase in energy expenditure. However, these studies report variable changes to other aspects of gait such as muscle activity. Discrepancies between studies exist even within substrate types (e.g. sand), which suggests that relatively ‘fine-scale’ differences in substrate properties exert quantifiable influences on gait mechanics. In this study, we compare human walking mechanics on a range of sand substrates that vary in overall foot sinking depth. We demonstrate that variation in the overall sinking depth in sand is associated with statistically significant changes in joint angles and spatiotemporal variables in human walking but exerts relatively little influence on pendular energy recovery and muscle activations. Significant correlated changes between gait metrics are frequently recovered, suggesting a degree of coupled or mechanistic interaction in their variation within and across substrates. However, only walking speed (and its associated spatiotemporal variables) correlate frequently with absolute foot sinkage depth within individual sand substrates, but not across them. This suggests a causative relationship between walking speed and foot sinkage depth within individual sand substates is not coupled with systematic changes in joint kinematics and muscle activity in the same way as is observed across sand substrates.
Human walking biomechanics on sand substrates of varying foot sinking depth
- Award Group:
- Funder(s): Leverhulme Trust
- Award Id(s): RPG興2017興296
- Funder(s):
- Award Group:
- Funder(s): Medical Research Council (MRC) and Versus Arthritis as part of the Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
- Award Id(s): MR/P020941/1
- Funder(s):
Barbara F. Grant, James P. Charles, Kristiaan D'Août, Peter L. Falkingham, Karl T. Bates; Human walking biomechanics on sand substrates of varying foot sinking depth. J Exp Biol 2024; jeb.246787. doi: https://doi.org/10.1242/jeb.246787
Download citation file:
Advertisement
Cited by
Call for Papers: The Integrative Biology of the Gut. Guest Editors Carol Bucking, Matt Regan and John Terblanche
We are pleased to welcome submissions for our upcoming Special Issue: The Integrative Biology of the Gut . We are calling for forward-looking papers that address the functional roles of the gut. We will consider papers that address gut function from the cellular level to its interactions with other organs and tissues, including its role in diverse ecophysiological processes, spanning both vertebrate and invertebrate species. The deadline for submission to this issue is 1 October 2024.
Sensory perception in a changing world – join us in Liverpool in March 2025
We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the JEB Symposium Sensory Perception in a Changing World and the SEB satellite meeting. Find out more and register to join us in March 2025 in Liverpool, UK. Submit your abstract by 13 December 2024. Early-bird registration ends on 17 January 2025.
Extraordinary creatures: raptors
In our new Conversation focusing on extraordinary creatures, Simon Potier tells us about raptors, from peregrine falcons and eagles to vultures and owls, discussing their lifestyles, incredible sensory abilities and conservation successes.
Ultraviolet radiation: a neglected stressor
Although ultraviolet radiation (UVR) is pervasive and can alter the effects of other stressors in the environment, ecophysiologists rarely discuss or include UVR in their experimental design. In this Commentary, Coen Hird and colleagues provide a guide for experimental biologists to better understand if, when, and how UVR can be integrated into study designs to improve the ecological realism of their research.
Turkey vultures defy thin air by flying faster
Turkey vultures successfully fly at high altitude despite the challenge of generating lift in thin air, but how? Jonathan Rader & Ty Hedrick discovered that the birds fly 1m/s faster at 2200m than at sea level to generate sufficient lift to remain aloft.