Incubating birds trade off self-maintenance for keeping eggs warm. This causes lower incubation temperature in more challenging conditions, with consequences for a range of offspring traits. It is not yet clear how low developmental temperature affects cold tolerance early in life. This is ecologically important because before full thermoregulatory capacity is attained, precocial chicks must switch between foraging and being brooded when their body temperature declines. Hence, we studied how cold tolerance during conditions similar to a feeding bout in the wild was affected by incubation temperature in Japanese quail (Coturnix japonica). Cold-incubated (35.5°C) chicks took the longest to develop, hatched smaller, and remained smaller during their first week of life compared to chicks incubated at higher temperatures (37.0°C, 38.5°C). This was reflected in increased cooling rate and reduced homeothermy, probably on account of reductions in both heat-producing capacity and insulation. Lower cold tolerance could exacerbate other temperature-linked phenotypic effects and, hence, also the trade-off between future and current reproduction from the perspective of the incubating parent.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview