Diapause is a deep resting stage facilitating temporal avoidance of unfavourable environmental conditions that is used by many insects to adapt their life cycle to seasonal variation. Although considerable work has been invested in trying to understand each of the major diapause stages (induction, maintenance and termination), we know very little about the transitions between stages, especially diapause termination. Understanding diapause termination is critical for modelling and predicting spring emergence and winter physiology of insects, including many pest insects. In order to gain these insights we investigated metabolome dynamics across diapause development in pupae of the butterfly Pieris napi, which exhibits adaptive latitudinal variation in the length of endogenous diapause that is uniquely well characterized. By employing a time-series experiment we show that the whole-body metabolome is highly dynamic throughout diapause and differs between pupae kept at a diapause-terminating (low), or at a diapause-maintaining (high) temperature. We show major physiological transitions through diapause, separated temperature-dependent from temperature-independent processes and identified significant patterns of metabolite accumulation and degradation. Together the data show that while the general diapause phenotype (suppressed metabolism, increased cold tolerance) is established in a temperature-independent fashion, diapause termination is temperature-dependent and requires a cold signal. This revealed several metabolites that are only accumulated in diapause terminating conditions and degraded in a temperature-unrelated fashion during diapause termination. In conclusion, our findings indicate that some metabolites, in addition to functioning as e.g. cryoprotectants, are candidates for having regulatory roles as metabolic clocks or time-keepers during diapause.
Metabolome dynamics of diapause in the butterfly Pieris napi: distinguishing maintenance, termination and post-diapause phases
Currently Viewing Accepted Manuscript - Newer Version Available
- Split-screen
- Views Icon Views
- PDF LinkPDF File PDFPDF+SI
-
Article Versions Icon
Versions
- Version of Record 25 January 2018
- Accepted Manuscript 01 January 2017
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Philipp Lehmann, Peter Pruisscher, Vladimír Koštál, Martin Moos, Petr Šimek, Sören Nylin, Rasmus Agren, Leif Väremo, Christer Wiklund, Christopher W. Wheat, Karl Gotthard; Metabolome dynamics of diapause in the butterfly Pieris napi: distinguishing maintenance, termination and post-diapause phases. J Exp Biol 2017; jeb.169508. doi: https://doi.org/10.1242/jeb.169508
Download citation file:
Advertisement
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3667)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3667)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3667)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
Ecotourism affecting iguana glucose tolerance
-Iguanas.jpg?versionId=3667)
Ecotourists feeding grapes on skewers to north Bahamian rock iguanas may be doing the reptiles more harm than good as the sugar charged diet is giving the animals high blood sugar.
Evolution of metabolic plasticity
-MetabolicPlasticity.png?versionId=3667)
In their Commentary, Frank Seebacher and Julian Beaman propose that metabolic plasticity originated in prebiotic protocells and that it was a pre-requisite for effective transfer of genetic material across generations – the hallmark of Darwinian evolution.