Insect chill tolerance is strongly associated with the ability to maintain ion and water homeostasis during cold exposure. Maintenance of K+ balance is particularly important due to its role in setting the cell membrane potential that is involved in many aspects of cellular function and viability. In most insects, K+ balance is maintained through secretion at the Malpighian tubules balancing reabsorption from the hindgut and passive leak arising from the gut lumen. Here, we used a scanning ion-selective electrode technique (SIET) system at benign (23°C) and low (6°C) temperature to examine K+ flux across the Malpighian tubules and the rectal pads in the hindgut in five Drosophila species that differ in cold tolerance. We found that chill tolerant species were better at maintaining K+ secretion and supressing reabsorption during cold exposure. In contrast, chill susceptible species exhibited large reductions in secretion with no change, or a paradoxical increase, in K+ reabsorption. Using an assay to measure paracellular leak we found that chill susceptible species experience a large increase in leak during cold exposure, which could explain the increased K+ reabsorption found in these species. Our data therefore strongly support the hypothesis that cold tolerant Drosophila species are better at maintaining K+ homeostasis through an increased ability to maintain K+ secretion rates and through reduced leakage of K+ towards the hemolymph. These adaptations are manifested both at the Malpighian tubule and at the rectal pads in the hindgut and ensure that cold tolerant species experience less perturbation of K+ homeostasis during cold stress.
Cold tolerance of Drosophila species is tightly linked to epithelial K+ transport capacity of the Malpighian tubules and rectal pads
Current address: Department of Biology, Carleton University, Ottawa, Ontario, Canada
Currently Viewing Accepted Manuscript - Newer Version Available
- Split-screen
- Views Icon Views
- PDF LinkPDF File PDFPDF+SI
-
Article Versions Icon
Versions
- Version of Record 15 November 2017
- Accepted Manuscript 01 January 2017
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Mads Kuhlmann Andersen, Heath A. MacMillan, Andrew Donini, Johannes Overgaard; Cold tolerance of Drosophila species is tightly linked to epithelial K+ transport capacity of the Malpighian tubules and rectal pads. J Exp Biol 2017; jeb.168518. doi: https://doi.org/10.1242/jeb.168518
Download citation file:
Advertisement
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4616)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.