Extracellular ionic homeostasis in an insect central nervous system involves a peripheral intercellular diffusion barrier, an extracellular matrix and neuroglial cation transport. The peripheral location of the barrier in the superficial neuroglia is confirmed by intracellular recording from glial cells identified by peroxidase injection. This barrier protects the underlying neurones from large changes in ionic composition of the blood-plasma, but renders them more susceptible to fluctuations in ion composition resulting from neuronal signalling within the very restricted extracellular system. Because of the peripheral intercellular barrier, sodium movements between the blood and the extracellular fluid are largely transcellular and are mediated by ion pumps on the perineurial and underlying glial membranes. It is suggested that the homeostatic role of the neuroglial ion pumps is augmented by an anion matrix which functions as an extracellular sodium reservoir. It is proposed that during depletion of extracellular sodium, this cation is released by the matrix to maintain the sodium activity in the fluid at the axon surfaces.
Mechanisms of ionic homeostasis in the central nervous system of an insect
J. E. Treherne, P. K. Schofield; Mechanisms of ionic homeostasis in the central nervous system of an insect. J Exp Biol 1 December 1981; 95 (1): 61–73. doi: https://doi.org/10.1242/jeb.95.1.61
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.