Tissue transplantation methods, previously used to study neural development, myelination and inherited disorders of myelin can be applied also to the investigation of repair and regeneration in the mammalian CNS. The elongation of axons from injured peripheral nerve of CNS has been studied in adult mice and rats by observing the growth of axons into PNS or CNS tissue grafts. Following spinal cord injury and also after transplantation of optic nerves into the PNS there is axonal sprouting but these neuronal processes fail to elongate more than a few mm into the surrounding glia. On the other hand if segments of a peripheral nerve are grafted into the transected spinal cord, axons arising from spinal neurons and dorsal root ganglia become associated with the transplanted Schwann cells and elongate along the graft, approximately 1 cm. Recently the elongation of axons from spinal and medullary neurones was studied using a new experimental model which employed PNS grafts as ‘bridges’ to connect the spinal cord and the brain stem. In a series of adult C57BL/6J mice and Sprague Dawley rats, autologous segments of sciatic nerve were used to create ‘bridges’ between the lower cervical or upper thoracic spinal cord and the medulla oblongata. The spinal cord between these two levels was left intact. Grafted segments examined by light and electron microscope 1-7 months after surgery were well innervated by Schwann cell ensheathed axons that had grown the entire length of the graft (2 cm in mice and 3.5 cm in rats). The origin and termination of these axons were determined by transecting the regenerated grafts and applying horseradish peroxidase to the cut ends. Retrogradely labelled neurones were found to be distributed widely in the gray matter of the spinal cord and medulla near the sites of insertion of the graft. Anterogradely labelled fibres coursing within the graft penetrated the CNS for short distances, approximately 2 mm. These new results indicate that following CNS injury a conducive glial environment does allow spinal and brain stem neurones to elongate axons for distances that can be greater than those they usually extend for in the intact animal. This evidence that the regenerative response of similar axons differs in CNS and PNS neuroglia supports the hypothesis that influences arising from the environment play an important role in the success or failure of regeneration. The regenerative potentiality of central neurones may be expressed only when the CNS neuroglial environment is changed to resemble that in the PNS.

This content is only available via PDF.