1. A scheme is presented which summarizes the activation and deactivation of the membrane currents which underlie pacemaking in the natural pacemaker of the heart. 2. Experimental evidence (mostly obtained using the voltage-clamp technique) for the properties of the time-dependent membrane currents in pacemaking tissue of the frog and the rabbit is discussed. 3. The mode of the inhibitory action of acetylcholine on pacemaker cells is considered. In the amphibian pacemaker cell, acetylcholine probably reduces slow inward current (as it certainly does in amphibian atrium) but in mammalian sino-atrial node it seems that such action, if present at all, is much less marked. In the pacemakers of both amphibian and mammal, acetylcholine greatly increases outward potassium current and there is recent evidence that it may do so by opening up a special acetylcholine-activated potassium channel. 4. Adrenaline greatly increases the slow inward current in pacemaker as in other cardiac tissues. This increase, together with (in mammal at least) an increased change of an additional pacemaking current, overrides an adrenaline-induced increase in outward current and leads to acceleration of the pacemaking rate. 5. The Appendix contains a brief consideration of the experimental and theoretical basis for the method of exponential separation of outward current components in the presence of the extracellular potassium accumulation that inevitably accompanies the flow of outward membrane current.
Cardiac pacemaker oscillation and its modulation by autonomic transmitters
H. Brown, D. Difrancesco, S. Noble; Cardiac pacemaker oscillation and its modulation by autonomic transmitters. J Exp Biol 1 August 1979; 81 (1): 175–204. doi: https://doi.org/10.1242/jeb.81.1.175
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3772)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3772)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3772)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
An accelerometer-derived ballistocardiogram method for detecting heart rate in free-ranging marine mammals
-Whales.jpg?versionId=3772)
Max Czapanskiy and co show how the resting heart rates of blue whales are immortalized in the accelerometry traces collected by motion sensing data tags.
Global change and physiological challenges for Amazonian fish
-Review.png?versionId=3772)
In their Review, Adalberto Luis Val and Chris Wood discuss the physiological threats to the unique and diverse fish fauna of Amazonia.