The giant axons of this extreme osmoconformer were adapted, in vitro, to progressive hyposmotic dilution of the bathing medium (from 1024 m-Osmol to concentrations as low as 76.8 m-Osmol). Hyposmotic adaptation is associated with reductions in the intracellular concentrations of both sodium and potassium ions. These reductions do not appear to result from appreciable axonal swelling. The different electrical responses to isosmotic and hyposmotic dilution suggest that reduction in [Na+]1 results from ouabain-dependent sodium extrusion, in response to ionic dilution, and that reduction in [K+]1 is induced by a combination of ionic and osmotic dilution. The reduced level of intracellular potassium achieved during hyposmotic adaptation represents a balance between the necessity to contribute to osmotic equilibration and to maintain a potassium gradient across the axon membrane sufficient to produce appreciable axonal hyperpolarization during dilution of the bathing medium. This hyperpolarization tends to maintain the amplitude of the action potential, by compensating for reduction in overshoot (with decline in ENa), and by reducing sodium inactivation. This, together with the reduction in [Na+]1, enables overshooting action potentials of relatively large amplitude and rapid rise time to be maintained during more than tenfold dilution of the ionic and osmotic concentration of the bathing medium.
Axonal Adaptations to Osmotic and Ionic Stress in an Invertebrate Osmoconformer (Mercierella Enigmatica Fauvel): III. Adaptations to Hyposmotic Dilution
J. A. BENSON, J. E. TREHERNE; Axonal Adaptations to Osmotic and Ionic Stress in an Invertebrate Osmoconformer (Mercierella Enigmatica Fauvel): III. Adaptations to Hyposmotic Dilution. J Exp Biol 1 October 1978; 76 (1): 221–235. doi: https://doi.org/10.1242/jeb.76.1.221
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.