- 1.
Application of mechanical stimulation or crude starfish extracts to the mantle edge of Aequipecten irradians elicited afferent impulse activity in the radial pallial nerves and local movements of the stimulated mantle edge. The evoked afferent spike activity was not recorded from primary receptor cells. The local mantle edge movements were controlled by peripherally located neurones and resembled jet formation on the velum of intact scallops.
- 2.
The central efferent neurones that supply the adductor muscle and much of the mantle edge are situated in the visceroparietal ganglion. Cobaltous chloride back-filling of the radial pallial nerves of the right side revealed the routes of the nerve fibres and the locations of the cell bodies in the visceroparietal ganglion.
- 3.
One group of motor neurones has fibres that are spatio-topically arranged across the visceroparietal ganglion and play a role in jet formation on corresponding portions of the mantle edge on both valves. It is apparent that axons from this group of mantle edge efferents traverse the ganglion without chemical synaptic connection.
- 4.
Two groups of mantle edge efferents that control concerted movements of the mantle edge on both shells appear to have cell bodies in the lateral margins of the dorso-central lobes. One group of motor neurones controls the raising of the velum curtain to an erect position around the shell margin. The output from the second group of efferents can be synchronized with the motor output to the adductor muscle to ensure that the velum folds into the mantle cavity, and thus is protected, as the shells are closed.
- 5.
Fibres in the radial pallial nerves have conduction velocities of up to 2.35 m/s at a temperature of 25 °C.
The Sensitivity and Control of the Scallop Mantle Edge
PHILIP J. STEPHENS; The Sensitivity and Control of the Scallop Mantle Edge. J Exp Biol 1 August 1978; 75 (1): 203–221. doi: https://doi.org/10.1242/jeb.75.1.203
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3942)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3942)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.