In the decapod Crustacea, Palinurus vulgaris and Fasus lalandii, the reflex influences of one particular proprioceptor organ, the coxo-basal chordotonal organ (CB), on all the muscles operating the proximal and distal joints of the same leg, have been analysed. The distal end of CB was clamped in fine forceps mounted on a servo-controlled stretcher, and CB length changes of 2 mm were applied. Motor unit activity of the different muscles was recorded as electromyograms (EMGs). 1. Two types of proprioceptive reflex evoked by CB length changes have been investigated: (a) resistance reflexes of the two levator and two depressor muscles of the same leg segment, the coxopodite, i.e. ‘intrasegmental reflexes’, (b) ‘intersegmental reflexes’ induced in the muscles operating the proximal (T-C) joint of the same leg, and in all eight muscles of the limb segments distat to CB. 2. Both levator muscles respond reflexly to imposed CB stretch (which normally occurs with limb ‘depression’), while both depressors respond during CB shortening (or passive “elevation” of the leg). 3. Intersegmentally CB stretch reflexly activates the M-C extensor muscle, and sometimes facilitates the T-C remotor and C-P bender muscles. Shortening of the single CB organ of a leg excites one or two tonic motor units of the T-C promotor and M-C flexor muscles, and also facilitates the remotor, I-M reductor, and the single stretcher-opener excitatory motoneurone. 4. Some of the muscles, particularly the M-C flexor and extensor muscles, are also influenced intersegmentally by the resting length of CB, usually but not invariably in the same direction as for the corresponding dynamic reflexes. The role of the CB chordotonal organ is discussed, with particular consideration of its intersegmental reflex influence on the posture of the entire leg, and on the more complex motor behaviour of locomotion, where it may be specially significant in coordination of the limb in lateral walking. A complex picture of both tonic and dynamic, inra- and intersegmental reflex regulation of the positions and movements of the limb segments, thus emerges.
Intersegmental reflex coordination by a single joint receptor organ (CB) in rock lobster walking legs
F. Clarac, J. P. Vedel, B. M. Bush; Intersegmental reflex coordination by a single joint receptor organ (CB) in rock lobster walking legs. J Exp Biol 1 April 1978; 73 (1): 29–46. doi: https://doi.org/10.1242/jeb.73.1.29
Download citation file:
Advertisement
Cited by
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4510)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4510)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.