1. Artifically metamorphosed axolotls were exposed to both brief (impulse) and long-lasting horizontal angular accelerations on a turn-table. The animals responded with a head-turning reaction. 2. The general course of the reaction to impulse acceleration was independent of stimulus intensity. The velocity of the head movement first increased to a maximum exponentially and then decreased in a negative exponential manner. Stimulus intensity had a linear relationship to the mean maximum velocity and mean total angle covered by head-turning. The average velocity-time curves at various stimulus intensities differed only by a velocity factor. 3. During long-lasting constant accelerations the velocity of the head-turning increased to a maximum velocity in a sigmoid time-course and then decreased, first to a constant velocity, and then further. Mean values of the maximum velocity were correlated linearly with the stimulus intensity. 4. It was concluded that the head-turning reflexes in axolotls do not agree with the accepted movements of the vertebrate cupula and therefore are not a simple ‘copy’ of the afferent input. It is also suggested that the reaction threshold differes from that for the labyrinthine input.

This content is only available via PDF.