1. Diving apnoea in Rana pipiens was initiated by submerging the external nares. As the water level was raised above the frog, both buccal and lung pressure increased by an amount corresponding to the water head. During submergence the external nares remained closed, although the apnoeic period was punctuated by ventilation movements which moved gas between the lungs and buccal cavity. 2. Bilateral section of the ophthalmic nerves did not alter the normal pattern of ventilation in air, although it often resulted in the intake of water into the buccal cavity on submergence. Introduction of water into the buccal cavity, either naturally as in denervates or by injection through a catheter in intact frogs, triggered sustained electromyographical activity in some respiratory muscles. 3. Electroneurograms recorded from the cut peripheral end of an ophthalmic nerve showed that receptors in the external narial region were stimulated by movement of a water meniscus across them. Activity could also be recorded in the ophthalmic nerve in response to water flow past the submerged nares. Punctate stimulation of the narial region confirmed that these receptors were mechanosensitive. 4. Bilateral electrical stimulation of the central ends of cut ophthalmic nerves in lightly anaesthetized frogs caused apnoea with a latency of less than 200 ms. The external nares remained closed throughout the period of stimulation although buccal pressure events, resembling underwater ventilation movements, occurred when stimulation was prolonged.

This content is only available via PDF.