1. An electrophysiological method was used to estimate the half-times for sodium and potassium entry to, and efflux from, the extra-axonal space in peripheral nerve and central nervous connectives of two species of crustacean. Results from crab (marine) and crayfish (fresh water) were qualitatively similar. 2. Peripheral nerve showed no evidence for diffusion barriers, potassium entry and efflux being rapid, and proceeding at comparable rates. 3. In connective, potassium entry was extremely slow, with a half-time greater than 100 min, while potassium efflux was relatively rapid (T 1/2 = 6 min). Sodium movements were less restricted, but sodium entry was more rapid than sodium efflux. 4. The potassium experiments were compared with the behaviour of a theoretical model system. Evidence is presented for diffusional restriction to potassium at the connective perineurial layer. The mechanism of restriction may involve changes in permeability or activation of an ion pump in the perineurial layer. 5. The physiological significance of these findings is discussed.
Electrophysiological analysis of potassium and sodium movements in crustacean nervous system
N. J. Abbott, R. B. Moreton, Y. Pichon; Electrophysiological analysis of potassium and sodium movements in crustacean nervous system. J Exp Biol 1 August 1975; 63 (1): 85–115. doi: https://doi.org/10.1242/jeb.63.1.85
Download citation file:
Advertisement
Cited by
New funding schemes for junior faculty staff

In celebration of our 100th anniversary, JEB has launched two new grants to support junior faculty staff working in animal comparative physiology and biomechanics who are within five years of setting up their first lab/research group. Check out our ECR Visiting Fellowships and Research Partnership Kickstart Travel Grants.
JEB@100: an interview with Monitoring Editor Stuart Egginton

Stuart Egginton reveals how he overcame the challenges of being a comparative physiologist in a medical school and how he would tell his younger self to trust his instincts when pursuing new ideas.
Travelling Fellowships from JEB

Our Travelling Fellowships offer up to £3,000 to graduate students and post-doctoral researchers wishing to make collaborative visits to other laboratories. Next deadline to apply is 27 October 2023
Feedforward and feedback control in the neuromechanics

Auke J. Ijspeert and Monica A. Daley provide an overview of key knowledge gained from comparative vertebrate experiments and insights obtained from neuromechanical simulations and robotic approaches. Read the full Centenary Review Article here.
Light fine-tunes electric fish pulses to keep them in the shade

Weakly electric fish perceive their surroundings through electric chirrups and now Ana Camargo & colleagues have revealed that light fine-tunes the fish's electric pulses to ensure that they remain scheduled beneath the mats of vegetation they use for shelter, avoiding penetrating beams of light that could give them away.