1. An investigation has been made into the function and distribution of nerve fibres in the abdominal ganglion chain and its roots in the crayfish, Procambarus clarkii, by leading off action potentials from small prepared bundles following sensory stimulation.

2 .The sensory fields belonging to the first and second roots of each abdominal ganglion were determined, and the antero-posterior pathway of sensory fibres within the cord noted. It was found that the primary sensory fibres of the dorsal muscle receptor organs, entering through the second root, send out an anterior branch to the brain and a posterior one to the last ganglion. For most other sensory fibres much shorter intracentral branches are indicated, though some of them extend for two ganglia in the anterior direction and for one posteriorly. All sensory fibres in the connectives run on the same side as they enter.

3. The segmental divisions of the external skeleton and of the nervous system do not coincide, the neural segment slants in a posterior dorsal direction with respect to the skeletal one.

4. For the majority of the interneurones which innervate more than two abdominal segments it has been proved that they synapse with primary sensory fibres in each of the ganglia that these enter. Depending on the segment stimulated with respect to the leading-off position, both ascending and descending impulses are obtained in such interneurones and collision of the impulses has been observed. Some consequences of this type of integration are discussed.

5. For interneurones responding to bilateral or heterolateral stimulation the course of the impulses proved to be of at least two types. In some, cutting the fibre prevents the arrival of impulses except those set up on the side of the cut from which the recording is made. In others, recording from either side of the cut fibre does not exclude any of the sensory fields to which the fibre normally responded.

6. At least one interneurone is present in which all primary sensory fibres from the different segments to whose activity it responds collect in one ganglion.

This investigation was supported by Grant G-5461 of the National Science Foundation.
 On leave of absence from the Department of Zoology, University of Cambridge.