The extant diversity and rich fossil record of cetaceans provides an extraordinary evolutionary context for investigating the relationship between form, function and ecology. The transition from terrestrial to marine ecosystems is associated with a complex suite of morphological and physiological adaptations that were required for a fully aquatic mammalian life history. Two specific functional innovations that characterize the two great clades of cetaceans, echolocation in toothed whales (Odontoceti) and filter feeding in baleen whales (Mysticeti), provide a powerful comparative framework for integrative studies. Both clades exhibit gigantism in multiple species, but we posit that large body size may have evolved for different reasons and in response to different ecosystem conditions. Although these foraging adaptations have been studied using a combination of experimental and tagging studies, the precise functional drivers and consequences of morphological change within and among these lineages remain less understood. Future studies that focus at the interface of physiology, ecology and paleontology will help elucidate how cetaceans became the largest predators in aquatic ecosystems worldwide.

Researchers have long recognized the importance of body size in biology. The influence of scale is omnipresent throughout an animal's life history and its impact determines a diverse range of processes, ranging from organismal performance to ecological niche (Peters, 1983; Schmidt-Nielsen, 1984; Vermeij, 2016). Most importantly, body size acts as a primary driver and allometric constraint of metabolism such that larger animals generally exhibit lower mass-specific metabolic rates (Weibel and Hoppeler, 2005; West et al., 2002; White et al., 2009). Nevertheless, extremely large body size (i.e. gigantism) comes at the cost of high absolute food requirements (Croll et al., 2006; Williams, 2006), but also confers a suite of advantages, including reduced cost of transport (Alexander, 2005; Williams, 1999) and the ability to fast for extended periods of time (Castellini and Rea, 1992; Lindstedt and Boyce, 1985; Millar and Hickling, 1990), which together enhance migratory capacity (Watanabe et al., 2015). An additional benefit of gigantism is improved anti-predator defense and, therefore, decreased predation risk (Ford and Reeves, 2008; Sinclair et al., 2003). However, with rising anthropogenic disturbance and pressures worldwide (McCauley et al., 2015), many large animals are now facing increased extinction risk despite having protected status (Payne et al., 2016; Ripple et al., 2017).

The largest animals of both the past and present tend to be vertebrate filter feeders in marine ecosystems (Alexander, 1998; Friedman et al., 2010; Vermeij, 2016). Filter feeding in vertebrates is characterized by the engulfment of prey-laden water into the oropharyngeal cavity followed by the filtration of large numbers of organisms suspended in the fluid (Goldbogen et al., 2017; Motta et al., 2010; Paig-Tran et al., 2013; Rubenstein and Koehl, 1977; Sanderson et al., 2016; Sanderson and Wassersug, 1990; Werth, 2000b; Werth and Potvin, 2016). Swimming-induced dynamic pressures power engulfment in aquatic vertebrates (Vogel, 1994), but the specific flow pathways and mechanisms of prey capture likely vary among the recognized modes of filter feeding (Goldbogen et al., 2017; Paig-Tran et al., 2013; Sanderson et al., 2001, 2016; Sanderson and Wassersug, 1993). Most species filter feed at relatively low speeds with mouth agape, allowing water and prey to enter the mouth and then pass through an oral filter before exiting the oropharyngeal cavity (Simon et al., 2009; Werth, 2004; Werth and Potvin, 2016). In contrast, rorqual whales (Balaenopteridae; see Glossary) engulf large volumes intermittently at high speeds and then start filtration after the mouth has closed (Goldbogen et al., 2017). Although many vertebrate filter feeders exhibit large body size, we note that this foraging strategy is also exhibited by many smaller species, such as anchovies and sardines. These species can form extremely large aggregations, filter feed at lower trophic levels, and collectively accumulate a tremendous amount of biomass in upwelling habitats (Cury et al., 2000). Interestingly, much larger intermittent filter feeders, such as humpback whales, feed on these types of fish when oceanographic conditions permit (Fleming et al., 2015). With one filter feeder eating another, this trophic linkage reflects the rapid flux of energy through productive ecosystems from very small plankton to the largest whales.

Filter feeding contrasts with particulate feeding (Fig. 1), where prey is targeted and captured individually, and these foraging mechanisms result in divergent energetic efficiencies by affecting the rate of prey intake, the prey types that can be targeted and the mechanical costs of feeding (Carey and Goldbogen, 2017; James and Probyn, 1989; Sanderson and Cech, 1992). We note that this feeding mode characterization is more general than other behavioral frameworks that aim to define behavioral components of foraging such as prey capture, manipulation and processing (Hocking et al., 2017b; Kienle et al., 2017; Marshall and Goldbogen, 2015). Although filter feeders such as baleen (see Glossary) whales (Mysticeti) and whale sharks (Rhincodon typus) are the largest extant marine vertebrates, some particulate feeders have also evolved very large body sizes, suggesting that gigantism can evolve for different reasons and in response to a variety of environmental forces (Lindberg and Pyenson, 2006). Classic examples of gigantic particulate feeders include white sharks (Carcharodon carcharias) and sperm whales (Physeter macrocephalus) in modern oceans. Moreover, several extinct lineages of gigantic particulate feeders (i.e. Leviathan melvillei and Carcharocles megalodon) are also represented in the fossil record (Lambert et al., 2010; Pimiento and Balk, 2015). However, the largest animals among all the ocean giants, specifically in terms of body mass, are represented by several extant cetacean species (Lockyer, 1976). Although filter feeding likely represents the ancestral state of vertebrates (Sanderson and Wassersug, 1993), there is mounting evidence that filter feeding has secondarily evolved from particulate feeding [i.e. via raptorial (see Glossary) or suction prey capture mechanisms] in multiple independent lineages and ultimately led to large body size in both mammals and fishes (Friedman, 2012; Friedman et al., 2010; Geisler et al., 2017; Hocking et al., 2017a; Pyenson, 2017).

Fig. 1.

Illustration of different marine vertebrates exploiting a bait ball of forage fish. Among these species are many particulate feeders (e.g. cormorants, sea lions and dolphins), those that are largely limited to capturing one prey at a time. This contrasts with bulk filter feeding, characterized by the engulfment of large numbers of prey in a single mouthful, here represented by a humpback whale. Illustration by Alex Boersma.

Fig. 1.

Illustration of different marine vertebrates exploiting a bait ball of forage fish. Among these species are many particulate feeders (e.g. cormorants, sea lions and dolphins), those that are largely limited to capturing one prey at a time. This contrasts with bulk filter feeding, characterized by the engulfment of large numbers of prey in a single mouthful, here represented by a humpback whale. Illustration by Alex Boersma.

Glossary

Baleen

A keratinous filtering apparatus exhibited by extant baleen whales (Mysticeti), comprising transverse plates that fray on their lingual edge exposing tubules that act to retain prey as water exits the mouth.

Continuous ram filter feeding

A specific foraging mode exhibited by bowhead whales and right whales; Whales feed at slow speeds with mouth gape, allowing water to pass by baleen and exiting at the back corners of the mouth.

Crown cetacean

A crown group includes all living species and their ancestors back to the most recent common ancestor and all descendants of that ancestor even if extinct.

Edentulous

Toothless.

Flow sensing

Some marine mammals (i.e. pinnipeds) use specialized whiskers, or vibrissae, to track hydrodynamic signatures without the use of other sensory modalities.

Gingiva

The gums.

Lunge feeding or engulfment feeding

A dynamic feeding process in rorqual whales that involves the engulfment and subsequent filtration of a large volume of prey-laden water.

Pinniped

Amphibious, carnivorous marine mammals that include ‘eared’ seals (Otariidae), ‘earless’ seals (Phocidae) and walruses (Odobenidae).

Positive allometry

The disproportionate scaling of a parameter or process that is greater than what is expected by isometry (i.e. proportional increase).

Raptorial

Predatory, primarily with the use of teeth in odontocetes to seize prey.

Rorqual

Term used to describe members of a family of baleen whales (Balaenopteridae) that are characterized by lunge feeding, a unique filter feeding mode that is facilitated by a complex suite of anatomical adaptations.

Stem odontocete

A stem group is a paraphyletic group of extinct species, typically falling outside the crown group.

Suction feeding

A feeding mode characterized by the generation of negative pressure via oropharyngeal expansion to pull in fluid and suspended prey.

The evolutionary transitions from particulate feeding to filter feeding in aquatic vertebrates have followed similar trajectories in different lineages (Friedman, 2012). For example, the parallel morphological changes in both whales and bony fishes (i.e. pachycormiform teleosts) consisted of a reduction (and ultimate loss or near-complete loss) of dentition followed by an increase in body size (Friedman, 2012). Interestingly, the evolutionary innovation of filter feeding in mysticetes, which probably occurred approximately 30 Mya (Geisler et al., 2017; Pyenson, 2017), did not result in an immediate increase in extreme body size; rather, gigantism evolved in multiple baleen whale lineages much more recently (<5 Mya), during the Plio-Pleistocene (Pyenson, 2017; Pyenson and Vermeij, 2016; Slater et al., 2017). The evolution of gigantism in toothed whales (Odontoceti) is less clear, but a broad outline of body size through deep time in this clade suggests a more gradual increase in size since the origin of echolocation (Pyenson, 2017; Pyenson and Sponberg, 2011). Within the clade that comprises sperm whales and their extinct relatives (Physeteroidea), phylogenetic comparative analyses suggest that very large body size also evolved independently in multiple lineages (Boersma and Pyenson, 2015; Lambert et al., 2015). However, the precise timing and the mode of body size evolution among odontocetes remain poorly understood.

The body size of both toothed whales and baleen whales is generally many orders of magnitude larger than their prey (Domenici, 2001; Webb and De Buffrénil, 1990), with some exceptions in specific populations of deep-diving toothed whales that target giant squid or for some killer whales ecotypes that cooperatively hunt baleen whales (Clarke, 1996; Lindberg and Pyenson, 2006). This has important implications for the dynamics that govern the interaction between predator and prey, largely owing to larger animals being less maneuverable than smaller ones (Howland, 1974). Specifically, the scaling of control surfaces relative to body mass and volume indicates that larger animals should have diminished unsteady locomotor performance, thereby yielding lower acceleration and maneuvering capacity (Domenici, 2001; Vogel, 2008; Webb and De Buffrénil, 1990). Because smaller prey should more easily evade larger predators, large aquatic vertebrates have evolved different strategies to efficiently capture smaller prey, such as the use of suction feeding (see Glossary) (Bloodworth and Marshall, 2005; Hocking et al., 2013; Kane and Marshall, 2009; Werth, 2000a), high-speed attacks (Aoki et al., 2012; Marras et al., 2015; Aguilar Soto et al., 2008), ambush-like attack trajectories (Goldbogen et al., 2017, 2013; Huveneers et al., 2015), bulk filter feeding mechanisms with an enlarged engulfment apparatus (Goldbogen et al., 2010; Werth, 2004), coordinated feeding in groups (Benoit-Bird and Au, 2009; Wiley et al., 2011) or the use of appendages (i.e. tails or flukes) that can reach higher accelerations than the main body (Domenici et al., 2000, 2014; Oliver et al., 2013). Alternatively, larger animals can forage in dark environments using echolocation or flow-sensing (see Glossary) structures to gain a sensory advantage on their prey (Hanke et al., 2012; Johnson et al., 2004; Madsen et al., 2005, 2007; Miller et al., 2004). Such low-light habitats can generally occur at any depth at night or, conversely, at any time at extreme depths. However, deep habitats provide large endothermic predators access to prey that may be more vulnerable in the oxygen minimum zone (i.e. physiologically compromised and less able to avoid predation), thereby increasing foraging success (Gilly et al., 2013; Naito et al., 2017) via carefully orchestrated prey-specific approaches in concert with suction feeding (Madsen et al., 2013).

High quality prey often can be found deep in the ocean, so access to this remote habitat is essential to maximize foraging efficiency (Benoit-Bird et al., 2016; Friedlaender et al., 2016; Greene et al., 1988). Air-breathing predators must therefore evolve the capacity to dive longer and deeper to exploit these resources (Halsey et al., 2006; Hochachka, 2000; Mirceta et al., 2013). Diving capacity is influenced by the magnitude of body oxygen stores, the rate of oxygen usage and tolerance for low oxygen (Ponganis, 2015; Ponganis et al., 2011). Factors that influence oxygen storage include body size (Hudson and Jones, 1986), myoglobin content (Mirceta et al., 2013; Noren and Williams, 2000) and a wide range of mechanisms for tolerating low oxygen (Meir et al., 2009; Zenteno-Savin et al., 2010). The rate of oxygen usage is influenced by activity (Martín López et al., 2015; Williams et al., 2000), body condition (Miller et al., 2016), muscle design (Velten et al., 2013) and cardiovascular responses during a breath-hold dive (Ponganis et al., 2011). Despite the wide range of factors that influence diving capacity among diving birds and mammals, diving capacity generally increases with body size (Halsey et al., 2006). This follows from body oxygen stores being generally isometric (Hudson and Jones, 1986) and the metabolic rates exhibiting negative allometry (Uyeda et al., 2017; White et al., 2009), thereby making diving capacity increase by approximately (mass)0.3 (Halsey et al., 2006). However, departures from this general trend may be further influenced by ecological factors, physiological adaptations and behavioral specializations (Ponganis, 2015). Nevertheless, the enhanced diving capacity and, by extension, increased foraging capacity, namely the ability to access and efficiently exploit high quality prey patches, represents a fundamental advantage of large body size in breath-hold divers.

How, when and why did cetaceans evolve their high performance foraging capacity and how does this correspond to the evolution of gigantism? In toothed whales (Fig. 2A), it has been hypothesized that echolocation first evolved for nocturnal epipelagic foraging on diel vertically migrating cephalopods (Lindberg and Pyenson, 2007). Alternatively, stem odontocetes (see Glossary) may have first developed enhanced active auditory scene assessment or echo-ranging acoustic behavior in order to navigate. This ability could then be subsequently adapted to detect large prey or prey aggregations, providing selection pressure for increasingly sophisticated biosonar mechanisms and increased body size for deep-ocean foraging. Recent research has shown that the earliest cetaceans (i.e. stem cetaceans or archeocetes that are not members of Neoceti: Mysticeti+Odontoceti) exhibited unremarkable hearing specializations (neither ultrasonic nor infrasonic) compared with extant species (Geisler, 2017; Mourlam and Orliac, 2017). Nevertheless, unsophisticated echolocation should theoretically work for the normal hearing range of medium-sized mammals (Fenton and Ratcliffe, 2014). Paleontological and comparative studies suggest that biosonar evolved early in odontocetes and played a major role in the radiation and overall ecological success of this clade (Churchill et al., 2016; Geisler et al., 2014; Madsen and Surlykke, 2013; Park et al., 2016). Therefore, echolocation probably preceded the evolution of gigantism in odontocetes (Fig. 2A,B). The ability to exploit prey in low-light conditions would bolster nocturnal epipelagic foraging and the progressive exploration of deeper habitats. Either scenario would have selected for a suite of physiological mechanisms that enhance diving capacity, especially large body size and body plans that minimize the costs of diving (Pabst et al., 2016; Velten et al., 2013), in order to optimize foraging in mesopelagic and, ultimately, bathypelagic ecosystems (Fais et al., 2015). We hypothesize that these selective pressures led to the independent evolution of gigantism in multiple odontocete lineages including sperm whales (Physeteridae) and beaked whales (Ziphiidae), where the largest of them, the sperm whale (Physeter macrocephalus), spend nearly half of their lives at depths in excess of 500 m (Miller et al., 2004; Watwood et al., 2006).

Fig. 2.

Body size variation, evolutionary relationships and inferred feeding mode among cetaceans. (A) Cetacean phylogeny and inferred feeding mode for extant species. Modified from Pyenson (2017). (B) A broad estimate of body size evolution for mysticetes (orange) and odontocetes (red) over the past 25 million years. Maxima and minima are shown by the solid and dashed lines, respectively. Modified from Pyenson and Sponberg (2011). (C) Approximate length–mass relationships among extant cetaceans. Rorqual whales (Balaenopteridae) and gray whales (Eschrichtiidae), dark orange; Balaenidae, light orange; beaked whales (Ziphiidae) and sperm whales (Physeteridae), dark red; river dolphins (Platanista, Lipotes, Inioidea) and smaller toothed whales (Delphinoidea), light red. Some estimates may be close to observed maxima, whereas others are estimates based on length–mass relationships from closely related species (Bigg and Wolman, 1975; Bloch et al., 2012, 1996; Bloch and Zachariassen, 1989; Cubbage and Calambokidis, 1987; Folkens and Reeves, 2002; George, 2009; Kenyon, 1961; Lockyer, 1976; Omura et al., 1955; Perryman and Lynn, 2002; Read and Tolley, 1997; Velten et al., 2013).

Fig. 2.

Body size variation, evolutionary relationships and inferred feeding mode among cetaceans. (A) Cetacean phylogeny and inferred feeding mode for extant species. Modified from Pyenson (2017). (B) A broad estimate of body size evolution for mysticetes (orange) and odontocetes (red) over the past 25 million years. Maxima and minima are shown by the solid and dashed lines, respectively. Modified from Pyenson and Sponberg (2011). (C) Approximate length–mass relationships among extant cetaceans. Rorqual whales (Balaenopteridae) and gray whales (Eschrichtiidae), dark orange; Balaenidae, light orange; beaked whales (Ziphiidae) and sperm whales (Physeteridae), dark red; river dolphins (Platanista, Lipotes, Inioidea) and smaller toothed whales (Delphinoidea), light red. Some estimates may be close to observed maxima, whereas others are estimates based on length–mass relationships from closely related species (Bigg and Wolman, 1975; Bloch et al., 2012, 1996; Bloch and Zachariassen, 1989; Cubbage and Calambokidis, 1987; Folkens and Reeves, 2002; George, 2009; Kenyon, 1961; Lockyer, 1976; Omura et al., 1955; Perryman and Lynn, 2002; Read and Tolley, 1997; Velten et al., 2013).

The gradual increase in toothed whale body size since the Oligocene is markedly different than the much more recent (i.e. Plio-Pleistocene) and perhaps punctuated evolution of gigantism in baleen whales (Pyenson and Sponberg, 2011; Pyenson and Vermeij, 2016; Slater et al., 2017). Although extant baleen whales are edentulous (see Glossary) and use a keratinized oral filter as an obligate feeding mechanism (Goldbogen et al., 2017; Pivorunas, 1979; Szewciw et al., 2010; Thewissen et al., 2017; Werth, 2013), there are several well-described tooth-bearing mysticetes that currently represent the earliest known of all neocetes (Neoceti: Mysticeti+Odontoceti) or crown cetaceans (see Glossary) (Lambert et al., 2017). Because baleen does not readily fossilize, with notable exceptions (Esperante et al., 2008; Gioncada et al., 2016; Marx et al., 2017), it is difficult to infer precisely when filter feeding evolved (Fig. 2A). Two largely competing hypotheses disagree on whether tooth loss preceded the evolution of baleen (Marx et al., 2016; Peredo et al., 2017) or whether toothed mysticetes possessed both teeth and baleen simultaneously for millions of years before the ultimate loss of teeth (Deméré et al., 2008; Geisler et al., 2017). Comparative morphological analyses suggest that early toothed mysticetes were not able to filter feed using their teeth, unlike what is observed in some pinnipeds (see Glossary) such as leopard seals (Hocking et al., 2013). The early-tooth-loss hypothesis suggests that stem mysticetes evolved a dedicated suction feeding capacity, which led to tooth loss, and then baleen later evolved from enlarged gingiva (see Glossary) (Geisler, 2017; Marx et al., 2016; Peredo et al., 2017). This hypothesis is consistent with the observation of reduced dentition in odontocetes that exhibit high-performance suction feeding compared with close relatives (Werth, 2006). Although key fossils suggest that raptorial feeding preceded filter feeding independent of suction-feeding specializations (Geisler et al., 2017), experimental evidence in modern cetaceans demonstrates that different prey-capture mechanisms are not mutually exclusive and may be used together or in sequence for a given feeding morphology (Marshall and Goldbogen, 2015).

Despite the dearth of information available to better understand the early origins of mysticetes, it is thought that obligate filter feeding evolved in the early Oligocene (Pyenson, 2017), and then specialized filter feeding modes [i.e. intermittent ram filter feeding in rorqual whales and continuous ram filter feeding (see Glossary) in balaenid whales] evolved in the early Miocene, approximately 20 million years and 15 million years before the evolution of gigantism (Slater et al., 2017), respectively. The clade-wide shift in the mode of body size evolution is temporally linked to the onset of intensified glaciation and upwelling (Lawrence et al., 2006; Marlow et al., 2000; Slater et al., 2017). Both oceanographic processes are well-known drivers of prey abundance and patchiness in modern feeding hot spots for baleen whales (Croll et al., 2005; Nowacek et al., 2011). Wind-driven upwelling in temperate ecosystems brings cold, nutrient-rich deep water into the light-receiving photic zone, thereby causing a trophic cascade and an overall increase in productivity of planktonic organisms such as krill (Santora et al., 2011). With the influx of bioavailable iron from glacial runoff and ice sheet melting (Bhatia et al., 2013; Hawkings et al., 2014), the enhanced overall productivity is predicted to increase prey abundance (Meire et al., 2017). Although it has yet to be rigorously demonstrated, an increase in overall prey abundance should lead to greater patchiness given the tendency of animals to form aggregations (Parrish and Edelstein-Keshet, 1999). Also, if resources (i.e. primary productivity) become heterogeneously distributed (Martin, 2003), then prey for whales (i.e. zooplankton to forage fish) may also become patchy and be further modulated by large-scale oceanographic forcing (Cotté and Simard, 2005). Increased patchiness will result in a higher density of prey engulfed by baleen whales, thereby increasing the overall energetic efficiency of foraging (Goldbogen et al., 2011; Hazen et al., 2015). Furthermore, greater patchiness is associated with larger size classes of krill (Décima et al., 2010), thus baleen whales that target such patches will likely benefit from higher prey energy densities (Lee et al., 2006).

It is thought that the increased productivity, patchiness and prey densities that resulted from Plio-Pliestocene ocean dynamics provided mysticetes with an evolutionary pathway towards greater body sizes (Slater et al., 2017). Interestingly, a large raptorial shark predator, Carcharocles megalodon, apparently went extinct at this same climatic transition in deep time (Collareta et al., 2017; Pimiento and Clements, 2014), which may have provided release from predation and further facilitated gigantism in mysticetes. Alternatively, resistance to predation could have been a driver for larger body sizes in baleen whales. Nevertheless, it is not clear that C. megalodon preyed on baleen whales (Collareta et al., 2017), given that modern great white sharks (Carcharodon carcharias) typically scavenge on dead baleen whales (Curtis et al., 2006), rather than actively prey on baleen whales (Taylor et al., 2013). Researchers argue that the now extinct giant raptorial sperm whale (L. melvillei) of the Miocene preyed on small to medium-sized mysticetes and thus occupied the same ecological niche as extant transient killer whales (Orcinus orca) (Lambert et al., 2010). Killer whale attacks on multiple baleen whale species have been well documented (Ford and Reeves, 2008), although most attacks target small species or calves and thus may not represent a major force of predation (Ford and Reeves, 2008; Mehta et al., 2007).

If adult individuals of large, extant baleen whales are largely free from predation pressure, then their foraging performance across scale may reflect differences in foraging efficiency that selected for larger body size. The engulfment apparatus of baleen whales exhibits positive allometry (see Glossary) whereby larger whales possess relatively larger skulls, jaws and baleen (Goldbogen et al., 2012, 2010; Pyenson et al., 2013). In intermittent ram filter feeders (i.e. lunge filter feeding), specifically rorqual whales (Balaenopteridae), this pattern of relative growth is also observed in the dimensions of the hyper-extensible oropharyngeal cavity that is lined with specialized groove blubber (Shadwick et al., 2013). As a consequence, the mass-specific engulfment capacity in rorquals increases with body size (Goldbogen et al., 2012, 2010). Thus, for every feeding event, larger whales can enhance their foraging capacity by increasing the amount of prey captured. However, because lunge feeding (see Glossary) is a dynamic event with a large mouth aperture presented to flow at high speed, large amounts of water are accelerated and high drag is incurred (Goldbogen et al., 2007; Potvin et al., 2009; Simon et al., 2012). Despite the high energetic costs that result from increased drag during feeding, the overall efficiency of the feeding lunge is high so long as the density of the targeted prey patch is also high (Goldbogen et al., 2011). However, the high costs of feeding will limit diving capacity, which likely explain the relatively lower foraging dive durations of the largest rorquals (i.e. blue and fin whales) compared with other large whales (Acevedo-Gutierrez et al., 2002; Croll et al., 2001). The cost of a lunge is largely determined by the size of the engulfed water mass, but also the maximum speed just prior to mouth opening (Cade et al., 2016; Goldbogen et al., 2011; Potvin et al., 2009, 2012). Because large whales lunge at higher speeds and have greater mass-specific engulfment capacities, the combined cost progressively limits dive capacity that should otherwise be granted by large body size (Goldbogen et al., 2012). For example, the relatively high cost of feeding in blue whales is estimated to be approximately 60% of the total cost of a foraging dive (Goldbogen et al., 2011). By contrast, the cost of feeding in minke whales is predictably very low because of the very low mass-engulfment capacity, and thus is close to that for steady swimming (Blix and Folkow, 1995; Potvin et al., 2012). An additional cost of relatively larger gulps in bigger whales is that a greater proportion of the limited dive time must be devoted to the purging and filtration of the engulfed water (Goldbogen et al., 2012). Consequently, there is an inverse relationship between the number of lunges per dive and engulfment capacity, such that smaller whales take many small gulps and larger whales take fewer big gulps (Friedlaender et al., 2014). It follows that larger rorquals appear to be forfeiting their diving capacity for enhanced foraging capacity, and this predictably increases the energetic efficiency of feeding at larger sizes (Friedlaender et al., 2014; Goldbogen et al., 2012, 2011, 2010).

The mechanisms driving the evolution of gigantism and foraging capacity in cetaceans remains poorly understood. Here we provide different hypotheses that can be tested in future comparative studies. We posit that toothed whales evolved gigantism because echolocation allowed for the progressive invasion of the deep ocean that required larger size and enhanced diving capacity. In contrast, filter-feeding baleen whales evolved gigantism in response to recent changes in the ocean that provided high-quality prey patches, thereby resulting in increased foraging efficiency at greater whale sizes that could, in turn, support such extremes in body mass. With the advent of biologging tag technology, our ability to quantify the diving and foraging performance of cetaceans in their natural environment has greatly increased in the past two decades. The next great challenge is to integrate data from individual studies to test mechanistic hypotheses regarding form, function, physiology and ecology across scales. Specifically, we need to better understand the energetics of foraging and how it compares between particulate-feeding odontocetes and filter-feeding mysticetes. Furthermore, we need to test whether the estimated energetic efficiency of foraging increases with body size in both lineages and by what magnitude. Although direct oxygen consumption measurements cannot yet be made on cetaceans in natural environments, a comparative analysis of feeding rates and foraging performance in species ranging from the small harbor porpoise to the huge blue whale will provide key insights into the physiology and functional ecology of cetaceans. Moreover, these studies will clarify the processes that may have driven body size evolution in a group of mammals that ultimately led to the largest animals ever.

We thank David E. Cade, James A. Fahlbusch, Shirel R. Kahane-Rapport, Michael Ladegaard, Jean Potvin, Nicholas D. Pyenson, Paolo S. Segre and Danuta M. Wisniewska for providing useful comments and feedback on the article.

Funding

J.G. was funded in part by grants from the National Science Foundation (IOS-1656676), the Office of Naval Research (N000141612477) and a Terman Fellowship from Stanford University. P.T.M. was funded in part by a J.C. Skou Senior Fellowship at the Aarhus Institute for Advanced Studies, and grants from the Danish Natural Science Research Council.

Acevedo-Gutierrez
,
A.
,
Croll
,
D. A.
and
Tershy
,
B. R.
(
2002
).
High feeding costs limit dive time in the largest whales
.
J. Exp. Biol.
205
,
1747
-
1753
.
Aguilar Soto
,
N. A.
,
Johnson
,
M. P.
,
Madsen
,
P. T.
,
Díaz
,
F.
,
Domínguez
,
I.
,
Brito
,
A.
and
Tyack
,
P.
(
2008
).
Cheetahs of the deep sea: deep foraging sprints in short-finned pilot whales off Tenerife (Canary Islands)
.
J. Anim. Ecol.
77
,
936
-
947
.
Alexander
,
R. M.
(
1998
).
All-time giants: the largest animals and their problems
.
Palaeontology
41
,
1231
-
1245
.
Alexander
,
R. M.
(
2005
).
Models and the scaling of energy costs for locomotion
.
J. Exp. Biol.
208
,
1645
-
1652
.
Aoki
,
K.
,
Amano
,
M.
,
Mori
,
K.
,
Kourogi
,
A.
,
Kubodera
,
T.
and
Miyazaki
,
N.
(
2012
).
Active hunting by deep-diving sperm whales: 3D dive profiles and maneuvers during bursts of speed
.
Mar. Ecol. Prog. Ser.
444
,
289
-
301
.
Benoit-Bird
,
K. J.
and
Au
,
W. W. L.
(
2009
).
Cooperative prey herding by the pelagic dolphin, Stenella longirostris
.
J. Acoust. Soc. Am.
125
,
125
-
137
.
Benoit-Bird
,
K. J.
,
Southall
,
B. L.
and
Moline
,
M. A.
(
2016
).
Predator-guided sampling reveals biotic structure in the bathypelagic
.
Proc. R. Soc. B
283
,
20152457
.
Bhatia
,
M. P.
,
Kujawinski
,
E. B.
,
Das
,
S. B.
,
Breier
,
C. F.
,
Henderson
,
P. B.
and
Charette
,
M. A.
(
2013
).
Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean
.
Nature Geoscience
6
,
274
.
Bigg
,
M. A.
and
Wolman
,
A. A.
(
1975
).
Live-capture killer whale (Orcinus orca) fishery, British Columbia and Washington, 1962–73
.
J. Fish. Board Canada
32
,
1213
-
1221
.
Blix
,
A. S.
and
Folkow
,
L. P.
(
1995
).
Daily energy expenditure in free living minke whales
.
Acta Physiol. Scand.
153
,
61
-
66
.
Bloch
,
D.
and
Zachariassen
,
M.
(
1989
).
The “Skinn” values of pilot whales in the Faroe Islands. An evaluation and a corrective proposal
.
N. Atlantic Stud.
1
,
39
-
56
.
Bloch
,
D.
,
Desportes
,
G.
,
Zachariassen
,
M.
and
Christensen
,
I.
(
1996
).
The northern bottlenose whale in the Faroe Islands, 1584-1993
.
J. Zool.
239
,
123
-
140
.
Bloch
,
D.
,
Desportes
,
G.
,
Harvey
,
P.
,
Lockyer
,
C.
and
Mikkelsen
,
B.
(
2012
).
Life history of Risso's dolphin (Grampus griseus) (G. Cuvier, 1812) in the Faroe Islands
.
Aquat. Mamm.
38
,
250
.
Bloodworth
,
B.
and
Marshall
,
C. D.
(
2005
).
Feeding kinematics of Kogia and Tursiops (Odontoceti: Cetacea): characterization of suction and ram feeding
.
J. Exp. Biol.
208
,
3721
-
3730
.
Boersma
,
A. T.
and
Pyenson
,
N. D.
(
2015
).
Albicetus oxymycterus, a new generic name and redescription of a basal physeteroid (Mammalia, Cetacea) from the Miocene of California, and the evolution of body size in sperm whales
.
PLoS ONE
10
,
e0135551
.
Cade
,
D. E.
,
Friedlaender
,
A. S.
,
Calambokidis
,
J.
and
Goldbogen
,
J. A.
(
2016
).
Kinematic diversity in rorqual whale feeding mechanisms
.
Curr. Biol.
26
,
2617
-
2624
.
Carey
,
N.
and
Goldbogen
,
J. A.
(
2017
).
Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax
.
J. Exp. Biol.
Castellini
,
M. A.
and
Rea
,
L. D.
(
1992
).
The biochemistry of natural fasting at its limits
.
Experientia
48
,
575
-
582
.
Churchill
,
M.
,
Martinez-Caceres
,
M.
,
de Muizon
,
C.
,
Mnieckowski
,
J.
and
Geisler
,
J. H.
(
2016
).
The origin of high-frequency hearing in whales
.
Curr. Biol.
26
,
2144
-
2149
.
Clarke
,
M. R.
(
1996
).
Cephalopods as prey. III. Cetaceans
.
Philos. Trans. R. Soc. Lond. B Biol. Sci.
351
,
1053
-
1065
.
Collareta
,
A.
,
Lambert
,
O.
,
Landini
,
W.
,
Di Celma
,
C.
,
Malinverno
,
E.
,
Varas-Malca
,
R.
,
Urbina
,
M.
and
Bianucci
,
G.
(
2017
).
Did the giant extinct shark Carcharocles megalodon target small prey? Bite marks on marine mammal remains from the late Miocene of Peru
.
Palaeogeogr. Palaeoclimatol. Palaeoecol.
469
,
84
-
91
.
Cotté
,
C.
and
Simard
,
Y.
(
2005
).
Formation of dense krill patches under tidal forcing at whale feeding hot spots in the St. Lawrence Estuary
.
Mar. Ecol. Prog. Ser.
288
,
199
-
210
.
Croll
,
D. A.
,
Acevedo-Gutiérrez
,
A.
,
Tershy
,
B. R.
and
Urbán-Ramirez
,
J.
(
2001
).
The diving behavior of blue and fin whales: is dive duration shorter than expected based on oxygen stores?
Comp. Biochem. Physiol. A Mol. Integr. Physiol.
129
,
797
-
809
.
Croll
,
D. A.
,
Marinovic
,
B.
,
Benson
,
S.
,
Chavez
,
F. P.
,
Black
,
N.
,
Ternullo
,
R.
and
Tershy
,
B. R.
(
2005
).
From wind to whales: trophic links in a coastal upwelling system
.
Mar. Ecol. Prog. Ser.
289
,
117
-
130
.
Croll
,
D.
,
Kudela
,
R.
and
Tershy
,
B. R.
(
2006
).
Ecosystem impact of the decline of large whales in the North Pacific
. In
Whales, Whaling and Ocean Ecosystems
(ed.
J. A. e. a.
Estes
), pp.
202
-
214
.
Berkeley, CA
:
University of California Press
.
Cubbage
,
J. C.
and
Calambokidis
,
J.
(
1987
).
Size-class segregation of bowhead whales discerned through aerial stereophotogrammetry
.
Mar. Mamm. Sci.
3
,
179
-
185
.
Curtis
,
T. H.
,
Kelly
,
J. T.
,
Menard
,
K. L.
,
Laroche
,
R. K.
,
Jones
,
R. E.
and
Klimley
,
A. P.
(
2006
).
Observations on the behavior of white sharks scavenging from a whale carcass at Point Reyes, California
.
Calif. Fish Game
92
,
113
.
Cury
,
P.
,
Bakun
,
A.
,
Crawford
,
R. J.
,
Jarre
,
A.
,
Quinones
,
R. A.
,
Shannon
,
L. J.
and
Verheye
,
H. M.
(
2000
).
Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems
.
ICES J. Mar. Sci.
57
,
603
-
618
.
Décima
,
M.
,
Ohman
,
M. D.
and
De Robertis
,
A.
(
2010
).
Body size dependence of euphausiid spatial patchiness
.
Limnol. Oceanogr.
55
,
777
-
788
.
Deméré
,
T. A.
,
McGowen
,
M. R.
,
Berta
,
A.
and
Gatesy
,
J.
(
2008
).
Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales
.
Syst. Biol.
57
,
15
-
37
.
Domenici
,
P.
(
2001
).
The scaling of locomotor performance in predator-prey encounters: from fish to killer whales
.
Comp. Biochem. Physiol. A Mol. Integr. Physiol.
131
,
169
-
182
.
Domenici
,
P.
,
Batty
,
R. S.
,
Simila
,
T.
and
Ogam
,
E.
(
2000
).
Killer whales (Orcinus orca) feeding on schooling herring (Clupea harengus) using under-water tail-slaps: kinematic analyses of field observations
.
J. Exp. Biol.
203
,
283
-
294
.
Domenici
,
P.
,
Wilson
,
A. D. M.
,
Kurvers
,
R. H. J. M.
,
Marras
,
S.
,
Herbert-Read
,
J. E.
,
Steffensen
,
J. F.
,
Krause
,
S.
,
Viblanc
,
P. E.
,
Couillaud
,
P.
and
Krause
,
J.
(
2014
).
How sailfish use their bills to capture schooling prey
.
Proc. R. Soc. B
281
,
20140444
.
Esperante
,
R.
,
Brand
,
L.
,
Nick
,
K. E.
,
Poma
,
O.
and
Urbina
,
M.
(
2008
).
Exceptional occurrence of fossil baleen in shallow marine sediments of the Neogene Pisco Formation, Southern Peru
.
Palaeogeogr. Palaeoclimatol. Palaeoecol.
257
,
344
-
360
.
Fais
,
A.
,
Aguilar Soto
,
N.
,
Johnson
,
M.
,
Pérez-González
,
C.
,
Miller
,
P. J. O.
and
Madsen
,
P. T.
(
2015
).
Sperm whale echolocation behaviour reveals a directed, prior-based search strategy informed by prey distribution
.
Behav. Ecol. Sociobiol.
69
,
663
-
674
.
Fenton
,
M. B.
and
Ratcliffe
,
J. M.
(
2014
).
Sensory biology: echolocation from click to call, mouth to wing
.
Curr. Biol.
24
,
R1160
-
R1162
.
Fleming
,
A. H.
,
Clark
,
C. T.
,
Calambokidis
,
J.
and
Barlow
,
J.
(
2015
).
Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current
.
Glob. Change Biol.
22
,
1214
-
1224
.
Folkens
,
P. A.
and
Reeves
,
R. R.
(
2002
).
Guide to Marine Mammals of the World
,
527pp
.
New York: National Audubon Society (Random House)
.
Ford
,
J. K. B.
and
Reeves
,
R. R.
(
2008
).
Fight or flight: antipredator strategies of baleen whales
.
Mammal. Rev.
38
,
50
-
86
.
Friedlaender
,
A. S.
,
Goldbogen
,
J. A.
,
Nowacek
,
D. P.
,
Read
,
A. J.
,
Johnston
,
D.
and
Gales
,
N.
(
2014
).
Feeding rates and under-ice foraging strategies of the smallest lunge filter feeder, the Antarctic minke whale (Balaenoptera bonaerensis)
.
J. Exp. Biol.
217
,
2851
-
2854
.
Friedlaender
,
A. S.
,
Johnston
,
D. W.
,
Tyson
,
R. B.
,
Kaltenberg
,
A.
,
Goldbogen
,
J. A.
,
Stimpert
,
A. K.
,
Curtice
,
C.
,
Hazen
,
E. L.
,
Halpin
,
P. N.
and
Read
,
A. J.
(
2016
).
Multiple-stage decisions in a marine central-place forager
.
R. Soc. Open Sci.
3
,
160043
.
Friedman
,
M.
(
2012
).
Parallel evolutionary trajectories underlie the origin of giant suspension-feeding whales and bony fishes
.
Proc. R. Soc. B Biol. Sci.
279
,
944
-
951
.
Friedman
,
M.
,
Shimada
,
K.
,
Martin
,
L. D.
,
Everhart
,
M. J.
,
Liston
,
J.
,
Maltese
,
A.
and
Triebold
,
M.
(
2010
).
100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas
.
Science
327
,
990
-
993
.
Geisler
,
J. H.
(
2017
).
Evolution: hearing and feeding in fossil whales
.
Curr. Biol.
27
,
R596
-
R598
.
Geisler
,
J. H.
,
Colbert
,
M. W.
and
Carew
,
J. L.
(
2014
).
A new fossil species supports an early origin for toothed whale echolocation
.
Nature
508
,
383
.
Geisler
,
J. H.
,
Boessenecker
,
R. W.
,
Brown
,
M.
and
Beatty
,
B. L.
(
2017
).
The origin of filter feeding in whales
.
Curr. Biol.
27
,
2036
-
2042.e2
.
George
,
J. C.
(
2009
).
Growth, Morphology and Energetics of Bowhead Whales (Balaena mysticetus)
.
PhD thesis, University of Alaska Fairbanks
.
Gilly
,
W. F.
,
Beman
,
J. M.
,
Litvin
,
S. Y.
and
Robison
,
B. H.
(
2013
).
Oceanographic and biological effects of shoaling of the oxygen minimum zone
.
Annu. Rev. Mar. Sci.
5
,
393
-
420
.
Gioncada
,
A.
,
Collareta
,
A.
,
Gariboldi
,
K.
,
Lambert
,
O.
,
Di Celma
,
C.
,
Bonaccorsi
,
E.
,
Urbina
,
M.
and
Bianucci
,
G.
(
2016
).
Inside baleen: exceptional microstructure preservation in a late Miocene whale skeleton from Peru
.
Geology
44
,
839
-
842
.
Goldbogen
,
J. A.
,
Pyenson
,
N. D.
and
Shadwick
,
R. E.
(
2007
).
Big gulps require high drag for fin whale lunge feeding
.
Mar. Ecol. Prog. Ser.
349
,
289
-
301
.
Goldbogen
,
J. A.
,
Potvin
,
J.
and
Shadwick
,
R. E.
(
2010
).
Skull and buccal cavity allometry increase mass-specific engulfment capacity in fin whales
.
Proc. R. Soc. B Biol. Sci.
277
,
861
-
868
.
Goldbogen
,
J. A.
,
Calambokidis
,
J.
,
Oleson
,
E.
,
Potvin
,
J.
,
Pyenson
,
N. D.
,
Schorr
,
G.
and
Shadwick
,
R. E.
(
2011
).
Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density
.
J. Exp. Biol.
214
,
131
-
146
.
Goldbogen
,
J. A.
,
Calambokidis
,
J.
,
Croll
,
D. A.
,
McKenna
,
M. F.
,
Oleson
,
E.
,
Potvin
,
J.
,
Pyenson
,
N. D.
,
Schorr
,
G.
,
Shadwick
,
R. E.
and
Tershy
,
B. R.
(
2012
).
Scaling of lunge-feeding performance in rorqual whales: mass-specific energy expenditure increases with body size and progressively limits diving capacity
.
Funct. Ecol.
26
,
216
-
226
.
Goldbogen
,
J. A.
,
Calambokidis
,
J.
,
Friedlaender
,
A. S.
,
Francis
,
J.
,
DeRuiter
,
S. L.
,
Stimpert
,
A. K.
,
Falcone
,
E.
and
Southall
,
B. L.
(
2013
).
Underwater acrobatics by the world's largest predator: 360 degrees rolling manoeuvres by lunge-feeding blue whales
.
Biol. Lett.
9
,
20120986
.
Goldbogen
,
J. A.
,
Cade
,
D. E.
,
Calambokidis
,
J.
,
Friedlaender
,
A. S.
,
Potvin
,
J.
,
Segre
,
P. S.
and
Werth
,
A. J.
(
2017
).
How baleen whales feed: the biomechanics of engulfment and filtration
.
Annu. Rev. Mar. Sci.
9
,
367
-
386
.
Greene
,
C. H.
,
Wiebe
,
P. H.
,
Burczynski
,
J.
and
Youngbluth
,
M. J.
(
1988
).
Acoustical detection of high-density krill demersal layers in the submarine canyons off Georges Bank
.
Science
241
,
359
.
Halsey
,
L. G.
,
Butler
,
P. J.
and
Blackburn
,
T. M.
(
2006
).
A phylogenetic analysis of the allometry of diving
.
Am. Nat.
167
,
276
-
287
.
Hanke
,
W.
,
Wieskotten
,
S.
,
Niesterok
,
B.
,
Miersch
,
L.
,
Witte
,
M.
,
Brede
,
M.
,
Leder
,
A.
and
Dehnhardt
,
G.
(
2012
).
Hydrodynamic perception in pinnipeds
. In
Nature-inspired Fluid Mechanics.
Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 119 (ed. C. Tropea, H. Bleckmann), pp.
255
-
270
. Berlin, Heidelberg: Springer.
Hawkings
,
J. R.
,
Wadham
,
J. L.
,
Tranter
,
M.
,
Raiswell
,
R.
,
Benning
,
L. G.
,
Statham
,
P. J.
,
Tedstone
,
A.
,
Nienow
,
P.
,
Lee
,
K.
and
Telling
,
J.
(
2014
).
Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans
.
Nat. Commun.
5
,
3929
.
Hazen
,
E. L.
,
Friedlaender
,
A. S.
and
Goldbogen
,
J. A.
(
2015
).
Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density
.
Sci. Adv.
1
,
e1500469
.
Hochachka
,
P. W.
(
2000
).
Pinniped diving response mechanism and evolution: a window on the paradigm of comparative biochemistry and physiology
.
Comp. Biochem. Physiol. A Mol. Integr. Physiol.
126
,
435
-
458
.
Hocking
,
D. P.
,
Evans
,
A. R.
and
Fitzgerald
,
E. M. G.
(
2013
).
Leopard seals (Hydrurga leptonyx) use suction and filter feeding when hunting small prey underwater
.
Polar Biol.
36
,
211
-
222
.
Hocking
,
D. P.
,
Marx
,
F. G.
,
Fitzgerald
,
E. M. G.
and
Evans
,
A. R.
(
2017a
).
Ancient whales did not filter feed with their teeth
.
Biol. Lett.
13, 20170348
.
Hocking
,
D. P.
,
Marx
,
F. G.
,
Park
,
T.
,
Fitzgerald
,
E. M. G.
and
Evans
,
A. R.
(
2017b
).
A behavioural framework for the evolution of feeding in predatory aquatic mammals
.
Proc. R. Soc. B Biol. Sci.
284
,
20162750
.
Howland
,
H. C.
(
1974
).
Optimal strategies for predator avoidance: the relative importance of speed and manoeuvrability
.
J. Theor. Biol.
47
,
333
-
350
.
Hudson
,
D. M.
and
Jones
,
D. R.
(
1986
).
The influence of body mass on the endurance to restrained submergence in the Pekin duck
.
J. Exp. Biol.
120
,
351
-
367
.
Huveneers
,
C.
,
Holman
,
D.
,
Robbins
,
R.
,
Fox
,
A.
,
Endler
,
J. A.
and
Taylor
,
A. H.
(
2015
).
White sharks exploit the sun during predatory approaches
.
Am. Nat.
185
,
562
-
570
.
James
,
A. G.
and
Probyn
,
T.
(
1989
).
The relationship between respiration rate, swimming speed and feeding behaviour in the cape anchovy Engraulis capensis Gilchris
.
J. Exp. Mar. Biol. Ecol.
131
,
81
-
100
.
Johnson
,
M.
,
Madsen
,
P. T.
,
Zimmer
,
W. M. X.
,
Aguilar de Soto
,
N.
and
Tyack
,
P. L.
(
2004
).
Beaked whales echolocate on prey
.
Proc. R. Soc. Lond. B Biol. Sci.
271
,
S383
-
S386
.
Kane
,
E. A.
and
Marshall
,
C. D.
(
2009
).
Comparative feeding kinematics and performance of odontocetes: belugas, Pacific white-sided dolphins and long-finned pilot whales
.
J. Exp. Biol.
212
,
3939
-
3950
.
Kenyon
,
K. W.
(
1961
).
Cuvier beaked whales stranded in the Aleutian Islands
.
J. Mammal.
42
,
71
-
76
.
Kienle
,
S. S.
,
Law
,
C. J.
,
Costa
,
D. P.
,
Berta
,
A.
and
Mehta
,
R. S.
(
2017
).
Revisiting the behavioural framework of feeding in predatory aquatic mammals
.
Proc. R. Soc. B Biol. Sci.
284
,
20171035
.
Lambert
,
O.
,
Bianucci
,
G.
,
Post
,
K.
,
De Muizon
,
C.
,
Salas-Gismondi
,
R.
,
Urbina
,
M.
and
Reumer
,
J.
(
2010
).
The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru
.
Nature
466
,
105
.
Lambert
,
O.
,
Collareta
,
A.
,
Landini
,
W.
,
Post
,
K.
,
Ramassamy
,
B.
,
Di Celma
,
C.
,
Urbina
,
M.
and
Bianucci
,
G.
(
2015
).
No deep diving: evidence of predation on epipelagic fish for a stem beaked whale from the Late Miocene of Peru
.
Proc. R. Soc. B Biol. Sci.
,
282
,
20151530
.
Lambert
,
O.
,
Martínez-Cáceres
,
M.
,
Bianucci
,
G.
,
Di Celma
,
C.
,
Salas-Gismondi
,
R.
,
Steurbaut
,
E.
,
Urbina
,
M.
and
de Muizon
,
C.
(
2017
).
Earliest mysticete from the Late Eocene of Peru sheds new light on the origin of baleen whales
.
Curr. Biol.
27
,
1535
-
1541.e2
.
Lawrence
,
K. T.
,
Liu
,
Z.
and
Herbert
,
T. D.
(
2006
).
Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation
.
Science
312
,
79
-
83
.
Lee
,
R. F.
,
Hagen
,
W.
and
Kattner
,
G.
(
2006
).
Lipid storage in marine zooplankton
.
Mar. Ecol. Prog. Ser.
307
,
273
-
306
.
Lindberg
,
D. R.
and
Pyenson
,
N. D.
(
2006
).
Evolutionary patterns in Cetacea. Fishing up prey size through deep time
. In
Whales, Whaling and Ocean Ecosystems
(ed.
J. A.
Estes
,
D. P.
Demaster
,
D. F.
Doak
,
T. M.
Williams
and
R. L.
Brownell
Jr.
), pp.
67
-
81
.
Oakland: University of California Press
.
Lindberg
,
D. R.
and
Pyenson
,
N. D.
(
2007
).
Things that go bump in the night: evolutionary interactions between cephalopods and cetaceans in the tertiary
.
Lethaia
40
,
335
-
343
.
Lindstedt
,
S. L.
and
Boyce
,
M. S.
(
1985
).
Seasonality, fasting endurance, and body size in mammals
.
Am. Nat.
125
,
873
-
878
.
Lockyer
,
C.
(
1976
).
Body weights of some species of large whales
.
ICES J. Mar. Sci.
36
,
259
-
273
.
Madsen
,
P. T.
and
Surlykke
,
A.
(
2013
).
Functional convergence in bat and toothed whale biosonars
.
Physiology
28
,
276
-
283
.
Madsen
,
P. T.
,
Johnson
,
M.
,
de Soto
,
N. A.
,
Zimmer
,
W.
and
Tyack
,
P.
(
2005
).
Biosonar performance of foraging beaked whales (Mesoplodon densirostris)
.
J. Exp. Biol.
208
,
181
-
194
.
Madsen
,
P. T.
,
Wilson
,
M.
,
Johnson
,
M. P.
,
Hanlon
,
R. T.
,
Bocconcelli
,
A.
,
Aguilar De Soto
,
N.
and
Tyack
,
P. L.
(
2007
).
Clicking for calamari: toothed whales can echolocate squid Loligo pealeii
.
Aquatic Biol
.
1
,
141
-
150
.
Madsen
,
P. T.
,
de Soto
,
N. A.
,
Arranz
,
P.
and
Johnson
,
M.
(
2013
).
Echolocation in Blainville's beaked whales (Mesoplodon densirostris)
.
J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.
199
,
451
-
469
.
Marlow
,
J. R.
,
Lange
,
C. B.
,
Wefer
,
G.
and
Rosell-Melé
,
A.
(
2000
).
Upwelling intensification as part of the Pliocene-Pleistocene climate transition
.
Science
290
,
2288
-
2291
.
Marras
,
S.
,
Noda
,
T.
,
Steffensen
,
J. F.
,
Svendsen
,
M. B. S.
,
Krause
,
J.
,
Wilson
,
A. D. M.
,
Kurvers
,
R. H. J. M.
,
Herbert-Read
,
J.
,
Boswell
,
K. M.
and
Domenici
,
P.
(
2015
).
Not so fast: swimming behavior of sailfish during predator–prey interactions using high-speed video and accelerometry
.
Integr. Comp. Biol.
55
,
719
-
727
.
Marshall
,
C. D.
and
Goldbogen
,
J. A.
(
2015
).
Feeding mechanisms
. In
Marine Mammal Physiology: Requisites for Ocean Living
(ed.
M. A.
Castellini
and
J.
Mellish
), pp.
95
-
118
.
Boca Raton, FL
:
CRC Press
.
Martin
,
A. P.
(
2003
).
Phytoplankton patchiness: the role of lateral stirring and mixing
.
Prog. Oceanogr.
57
,
125
-
174
.
Martín López
,
L. M.
,
Miller
,
P. J. O.
,
Aguilar de Soto
,
N.
and
Johnson
,
M.
(
2015
).
Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives
.
J. Exp. Biol.
218
,
1325
-
1338
.
Marx
,
F. G.
,
Hocking
,
D. P.
,
Park
,
T.
,
Ziegler
,
T.
,
Evans
,
A. R.
and
Fitzgerald
,
E. M.
(
2016
).
Suction feeding preceded filtering in baleen whale evolution
.
Memoirs Museum Victoria
75
,
71
-
82
.
Marx
,
F. G.
,
Collareta
,
A.
,
Gioncada
,
A.
,
Post
,
K.
,
Lambert
,
O.
,
Bonaccorsi
,
E.
,
Urbina
,
M.
and
Bianucci
,
G.
(
2017
).
How whales used to filter: exceptionally preserved baleen in a Miocene cetotheriid
.
J. Anat.
231
,
212
-
220
.
McCauley
,
D. J.
,
Pinsky
,
M. L.
,
Palumbi
,
S. R.
,
Estes
,
J. A.
,
Joyce
,
F. H.
and
Warner
,
R. R.
(
2015
).
Marine defaunation: animal loss in the global ocean
.
Science
347
,
1255641
.
Mehta
,
A. V.
,
Allen
,
J. M.
,
Constantine
,
R.
,
Garrigue
,
C.
,
Jann
,
B.
,
Jenner
,
C.
,
Marx
,
M. K.
,
Matkin
,
C. O.
,
Mattila
,
D. K.
,
Minton
,
G.
, et al. 
(
2007
).
Baleen whales are not important as prey for killer whales Orcinus orca in high-latitude regions
.
Mar. Ecol. Prog. Ser.
348
,
297
-
307
.
Meir
,
J. U.
,
Champagne
,
C. D.
,
Costa
,
D. P.
,
Williams
,
C. L.
and
Ponganis
,
P. J.
(
2009
).
Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals
.
Am. J. Physiol.– Regul. Integr. Comp. Physiol.
297
,
R927
-
R939
.
Meire
,
L.
,
Mortensen
,
J.
,
Meire
,
P.
,
Juul-Pedersen
,
T.
,
Sejr
,
M. K.
,
Rysgaard
,
S.
,
Nygaard
,
R.
,
Huybrechts
,
P.
and
Meysman
,
F. J. R.
(
2017
).
Marine-terminating glaciers sustain high productivity in Greenland fjords
.
Glob. Change Biol.
23
,
5344
-
5357
.
Millar
,
J. S.
and
Hickling
,
G. J.
(
1990
).
Fasting endurance and the evolution of mammalian body size
.
Funct. Ecol.
4
,
5
-
12
.
Miller
,
P. J. O.
,
Johnson
,
M. P.
and
Tyack
,
P. L.
(
2004
).
Sperm whale behaviour indicates the use of echolocation click buzzes ‘creaks’ in prey capture
.
Proc. R. Soc. Lond. B Biol. Sci.
271
,
2239
-
2247
.
Miller
,
P.
,
Narazaki
,
T.
,
Isojunno
,
S.
,
Aoki
,
K.
,
Smout
,
S.
and
Sato
,
K.
(
2016
).
Body density and diving gas volume of the northern bottlenose whale (Hyperoodon ampullatus)
.
J. Exp. Biol.
219
,
2458
-
2468
.
Mirceta
,
S.
,
Signore
,
A. V.
,
Burns
,
J. M.
,
Cossins
,
A. R.
,
Campbell
,
K. L.
and
Berenbrink
,
M.
(
2013
).
Evolution of mammalian diving capacity traced by myoglobin net surface charge
.
Science
340
,
1234192
.
Motta
,
P. J.
,
Maslanka
,
M.
,
Hueter
,
R. E.
,
Davis
,
R. L.
,
de la Parra
,
R.
,
Mulvany
,
S. L.
,
Habegger
,
M. L.
,
Strother
,
J. A.
,
Mara
,
K. R.
,
Gardiner
,
J. M.
, et al. 
(
2010
).
Feeding anatomy, filter-feeding rate, and diet of whale sharks Rhincodon typus during surface ram filter feeding off the Yucatan Peninsula, Mexico
.
Zoology
113
,
199
-
212
.
Mourlam
,
M. J.
and
Orliac
,
M. J.
(
2017
).
Infrasonic and ultrasonic hearing evolved after the emergence of modern whales
.
Curr. Biol.
27
,
1776
-
1781.e9
.
Naito
,
Y.
,
Costa
,
D. P.
,
Adachi
,
T.
,
Robinson
,
P. W.
,
Peterson
,
S. H.
,
Mitani
,
Y.
and
Takahashi
,
A.
(
2017
).
Oxygen minimum zone: an important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris
.
Ecol. Evol.
7
,
6259
-
6270
.
Noren
,
S. R.
and
Williams
,
T. M.
(
2000
).
Body size and skeletal muscle myoglobin of cetaceans: adaptations for maximizing dive duration
.
Comp. Biochem. Physiol. A Mol. Integr. Physiol.
126
,
181
-
191
.
Nowacek
,
D. P.
,
Friedlaender
,
A. S.
,
Halpin
,
P. N.
,
Hazen
,
E. L.
,
Johnston
,
D. W.
,
Read
,
A. J.
,
Espinasse
,
B.
,
Zhou
,
M.
and
Zhu
,
Y.
(
2011
).
Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula
.
Plos One
6
,
e19173
.
Oliver
,
S. P.
,
Turner
,
J. R.
,
Gann
,
K.
,
Silvosa
,
M.
and
Jackson
,
T. D. U.
(
2013
).
Thresher sharks use tail-slaps as a hunting strategy
.
PLoS ONE
8
,
e67380
.
Omura
,
H.
,
Fujino
,
K.
and
Kimura
,
S.
(
1955
).
Beaked whale Berardius bairdi of Japan, with notes on Ziphius cavirostris
.
Sci. Rep. Whales Res. Inst.
10
,
89
-
132
.
Pabst
,
D. A.
,
McLellan
,
W. A.
and
Rommel
,
S. A.
(
2016
).
How to build a deep diver: the extreme morphology of mesoplodonts
.
Integr. Comp. Biol.
56
,
1337
-
1348
.
Paig-Tran
,
E. W. M.
,
Kleinteich
,
T.
and
Summers
,
A. P.
(
2013
).
The filter pads and filtration mechanisms of the devil rays: variation at macro and microscopic scales
.
J. Morphol.
274
,
1026
-
1043
.
Park
,
T.
,
Fitzgerald
,
E. M. G.
and
Evans
,
A. R.
(
2016
).
Ultrasonic hearing and echolocation in the earliest toothed whales
.
Biol. Lett.
12
,
20160060
.
Parrish
,
J. K.
and
Edelstein-Keshet
,
L.
(
1999
).
Complexity, pattern, and evolutionary trade-offs in animal aggregation
.
Science
284
,
99
-
101
.
Payne
,
J. L.
,
Bush
,
A. M.
,
Heim
,
N. A.
,
Knope
,
M. L.
and
McCauley
,
D. J.
(
2016
).
Ecological selectivity of the emerging mass extinction in the oceans
.
Science
353
,
1284
-
1286
.
Peredo
,
C. M.
,
Pyenson
,
N. D.
and
Boersma
,
A. T.
(
2017
).
Decoupling tooth loss from the evolution of baleen in whales
.
Front. Mar. Sci.
4
,
67
.
Perryman
,
W. L.
and
Lynn
,
M. S.
(
2002
).
Evaluation of nutritive condition and reproductive status of migrating gray whales (Eschrichtius robustus) based on analysis of photogrammetric data
.
J. Cetacean Res. Manag.
4
,
155
-
164
.
Peters
,
R. H.
(
1983
).
The Ecological Implications of Body Size
.
Cambridge
:
Cambridge University Press
.
Pimiento
,
C.
and
Balk
,
M. A.
(
2015
).
Body-size trends of the extinct giant shark Carcharocles megalodon: a deep-time perspective on marine apex predators
.
Paleobiology
41
,
479
-
490
.
Pimiento
,
C.
and
Clements
,
C. F.
(
2014
).
When did Carcharocles megalodon become extinct? A new analysis of the fossil record
.
PLoS ONE
9
,
e111086
.
Pivorunas
,
A.
(
1979
).
Feeding mechanisms of baleen whales
.
Am. Sci.
67
,
432
-
440
.
Ponganis
,
P. J.
(
2015
).
Diving Physiology of Marine Mammals and Seabirds
. Cambridge:
Cambridge University Press
.
Ponganis
,
P. J.
,
Meir
,
J. U.
and
Williams
,
C. L.
(
2011
).
In pursuit of Irving and Scholander: a review of oxygen store management in seals and penguins
.
J. Exp. Biol.
214
,
3325
-
3339
.
Potvin
,
J.
,
Goldbogen
,
J. A.
and
Shadwick
,
R. E.
(
2009
).
Passive versus active engulfment: Verdict from trajectory simulations of lunge-feeding fin whales Balaenoptera physalus
.
J. R. Soc. Interface
6
,
1005
-
1025
.
Potvin
,
J.
,
Goldbogen
,
J. A.
and
Shadwick
,
R. E.
(
2012
).
Metabolic expenditures of lunge feeding rorquals across scale: implications for the evolution of filter feeding and the limits to maximum body size
.
PLoS ONE
7
,
e44854
.
Pyenson
,
N. D.
(
2017
).
The ecological rise of whales chronicled by the fossil record
.
Curr. Biol.
27
,
R558
-
R564
.
Pyenson
,
N. D.
and
Sponberg
,
S. N.
(
2011
).
Reconstructing body size in extinct crown Cetacea (Neoceti) using allometry, phylogenetic methods and tests from the fossil record
.
J. Mamm. Evol.
18
,
269
-
288
.
Pyenson
,
N. D.
and
Vermeij
,
G. J.
(
2016
).
The rise of ocean giants: maximum body size in Cenozoic marine mammals as an indicator for productivity in the Pacific and Atlantic Oceans
.
Biol. Lett.
12
,
20160186
.
Pyenson
,
N. D.
,
Goldbogen
,
J. A.
and
Shadwick
,
R. E.
(
2013
).
Mandible allometry in extant and fossil Balaenopteridae (Cetacea: Mammalia): The largest vertebrate skeletal element and its role in rorqual lunge feeding
.
Biol. J. Linn. Soc.
108
,
586
-
599
.
Read
,
A. J.
and
Tolley
,
K. A.
(
1997
).
Postnatal growth and allometry of harbour porpoises from the Bay of Fundy
.
Can. J. Zool.
75
,
122
-
130
.
Ripple
,
W. J.
,
Wolf
,
C.
,
Newsome
,
T. M.
,
Hoffmann
,
M.
,
Wirsing
,
A. J.
and
McCauley
,
D. J.
(
2017
).
Extinction risk is most acute for the world's largest and smallest vertebrates
.
Proc. Natl Acad. Sci. USA
114
,
10678
-
10683
.
Rubenstein
,
D. I.
and
Koehl
,
M. A. R.
(
1977
).
Mechanisms of filter feeding: some theoretical considerations
.
Am. Nat.
111
,
981
-
994
.
Sanderson
,
S. L.
and
Cech
,
J. J.
Jr.
(
1992
).
Energetic cost of suspension feeding versus particulate feeding by juvenile Sacramento blackfish
.
Trans. Am. Fish. Soc.
121
,
149
-
157
.
Sanderson
,
S. L.
and
Wassersug
,
R.
(
1990
).
Suspension-feeding vertebrates
.
Sci. Am.
262
,
96
-
101
.
Sanderson
,
S. L.
and
Wassersug
,
R.
(
1993
).
Convergent and alternative designs for vertebrate suspension feeding
. In
The Skull: Functional and Evolutionary Mechanisms
, Vol.
3
(ed.
J.
Hanken
and
B. K.
Hall
), pp.
37
-
112
.
Chicago, IL
:
University of Chicago Press
.
Sanderson
,
S. L.
,
Cheer
,
A. Y.
,
Goodrich
,
J. S.
,
Graziano
,
J. D.
and
Callan
,
W. T.
(
2001
).
Crossflow filtration in suspension-feeding fishes
.
Nature
412
,
439
-
441
.
Sanderson
,
S. L.
,
Roberts
,
E.
,
Lineburg
,
J.
and
Brooks
,
H.
(
2016
).
Fish mouths as engineering structures for vortical cross-step filtration
.
Nat. Commun.
7
,
11092
.
Santora
,
J. A.
,
Sydeman
,
W. J.
,
Schroeder
,
I. D.
,
Wells
,
B. K.
and
Field
,
J. C.
(
2011
).
Mesoscale structure and oceanographic determinants of krill hotspots in the California Current: implications for trophic transfer and conservation
.
Prog. Oceanogr.
91
,
397
-
409
.
Schmidt-Nielsen
,
K.
(
1984
).
Scaling: Why is Animal Size so Important?
Cambridge
:
Cambridge University Press
.
Shadwick
,
R. E.
,
Goldbogen
,
J. A.
,
Potvin
,
J.
,
Pyenson
,
N. D.
and
Vogl
,
A. W.
(
2013
).
Novel muscle and connective tissue design enables high extensibility and controls engulfment volume in lunge-feeding rorqual whales
.
J. Exp. Biol.
216
,
2691
-
2701
.
Simon
,
M.
,
Johnson
,
M.
,
Tyack
,
P.
and
Madsen
,
P. T.
(
2009
).
Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus)
.
Proc. R. Soc. B Biol. Sci.
276
.
Simon
,
M.
,
Johnson
,
M.
and
Madsen
,
P. T.
(
2012
).
Keeping momentum with a mouthful of water: Behavior and kinematics of humpback whale lunge feeding
.
J. Exp. Biol.
215
,
3786
-
3798
.
Sinclair
,
A. R. E.
,
Mduma
,
S.
and
Brashares
,
J. S.
(
2003
).
Patterns of predation in a diverse predator-prey system
.
Nature
425
,
288
.
Slater
,
G. J.
,
Goldbogen
,
J. A.
and
Pyenson
,
N. D.
(
2017
).
Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics
.
Proc. R. Soc. B Biol. Sci.
,
284
,
20170546
.
Szewciw
,
L. J.
,
de Kerckhove
,
D. G.
,
Grime
,
G. W.
and
Fudge
,
D. S.
(
2010
).
Calcification provides mechanical reinforcement to whale baleen alpha-keratin
.
Proc. R. Soc. B Biol. Sci.
277
,
2597
-
2605
.
Taylor
,
J. K. D.
,
Mandelman
,
J. W.
,
McLellan
,
W. A.
,
Moore
,
M. J.
,
Skomal
,
G. B.
,
Rotstein
,
D. S.
and
Kraus
,
S. D.
(
2013
).
Shark predation on North Atlantic right whales (Eubalaena glacialis) in the southeastern United States calving ground
.
Mar. Mamm. Sci.
29
,
204
-
212
.
Thewissen
,
J. G. M.
,
Hieronymus
,
T. L.
,
George
,
J. C.
,
Suydam
,
R.
,
Stimmelmayr
,
R.
and
McBurney
,
D.
(
2017
).
Evolutionary aspects of the development of teeth and baleen in the bowhead whale
.
J. Anat.
230
,
549
-
566
.
Uyeda
,
J. C.
,
Pennell
,
M. W.
,
Miller
,
E. T.
,
Maia
,
R.
and
McClain
,
C. R.
(
2017
).
The evolution of energetic scaling across the vertebrate tree of life
.
Am. Nat.
190
,
185
-
199
.
Velten
,
B. P.
,
Dillaman
,
R. M.
,
Kinsey
,
S. T.
,
McLellan
,
W. A.
and
Pabst
,
D. A.
(
2013
).
Novel locomotor muscle design in extreme deep-diving whales
.
J. Exp. Biol.
216
,
1862
-
1871
.
Vermeij
,
G. J.
(
2016
).
Gigantism and its implications for the history of life
.
PLoS ONE
11
,
e0146092
.
Vogel
,
S.
(
1994
).
Life in Moving Fluids: The Physical Biology of Flow
.
Princeton, NJ
:
Princeton University Press
.
Vogel
,
S.
(
2008
).
Modes and scaling in aquatic locomotion
.
Integr. Comp. Biol.
48
,
702
-
712
.
Watanabe
,
Y. Y.
,
Goldman
,
K. J.
,
Caselle
,
J. E.
,
Chapman
,
D. D.
and
Papastamatiou
,
Y. P.
(
2015
).
Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes
.
Proc. Natl Acad. Sci. USA
112
,
6104
-
6109
.
Watwood
,
S. L.
,
Miller
,
P. J. O.
,
Johnson
,
M.
,
Madsen
,
P. T.
and
Tyack
,
P. L.
(
2006
).
Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus)
.
J. Anim. Ecol.
75
,
814
-
825
.
Webb
,
P. W.
and
De Buffrénil
,
V.
(
1990
).
Locomotion in the biology of large aquatic vertebrates
.
Trans. Am. Fish. Soc.
119
,
629
-
641
.
Weibel
,
E. R.
and
Hoppeler
,
H.
(
2005
).
Exercise-induced maximal metabolic rate scales with muscle aerobic capacity
.
J. Exp. Biol.
208
,
1635
-
1644
.
Werth
,
A.
(
2000a
).
A kinematic study of suction feeding and associated behavior in the long-finned pilot whale, Globicephala melas (Traill)
.
Mar. Mamm. Sci.
16
,
299
-
314
.
Werth
,
A. J.
(
2000b
).
Feeding in marine mammals
. In
Feeding: Form, Function and Evolution in Tetrapod Vertebrates
(ed.
K.
Schwenk
), pp.
475
-
514
.
New York
:
Academic Press
.
Werth
,
A. J.
(
2004
).
Models of hydrodynamic flow in the bowhead whale filter feeding apparatus
.
J. Exp. Biol.
207
,
3569
-
3580
.
Werth
,
A. J.
(
2006
).
Mandibular and dental variation and the evolution of suction feeding in Odontoceti
.
J. Mammal.
87
,
579
-
588
.
Werth
,
A. J.
(
2013
).
Flow-dependent porosity and other biomechanical properties of mysticete baleen
.
J. Exp. Biol.
216
,
1152
-
1159
.
Werth
,
A. J.
and
Potvin
,
J.
(
2016
).
Baleen hydrodynamics and morphology of cross-flow filtration in balaenid whale suspension feeding
.
PLoS ONE
11
,
e0150106
.
West
,
G. B.
,
Woodruff
,
W. H.
and
Brown
,
J. H.
(
2002
).
Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals
.
Proc. Natl Acad. Sci. USA
99
,
2473
-
2478
.
White
,
C. R.
,
Blackburn
,
T. M.
and
Seymour
,
R. S.
(
2009
).
Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling
.
Evolution
63
,
2658
-
2667
.
Wiley
,
D.
,
Ware
,
C.
,
Bocconcelli
,
A.
,
Cholewiak
,
D. M.
,
Friedlaender
,
A. S.
,
Thompson
,
M.
and
Weinrich
,
M.
(
2011
).
Underwater components of humpback whale bubble-net feeding behaviour
.
Behaviour
148
,
575
-
602
.
Williams
,
T. M.
(
1999
).
The evolution of cost efficient swimming in marine mammals: limits to energetic optimization
.
Philos. Trans. R. Soc. Lond. B Biol. Sci.
354
,
193
-
201
.
Williams
,
T. M.
(
2006
).
Physiological and ecological consequences of extreme body size in whales
. In
Whales, Whaling, and Ocean Ecosystems
(ed.
J. A.
Estes
,
D. P.
DeMaster
,
D. F.
Doak
,
T. M.
Williams
and
R. L.
Brownell
), pp.
191
-
201
.
Berkeley, CA
:
University of California Press
.
Williams
,
T. M.
,
Davis
,
R. W.
,
Fuiman
,
L. A.
,
Francis
,
J.
,
Le Boeuf
,
B. L.
,
Horning
,
M.
,
Calambokidis
,
J.
and
Croll
,
D. A.
(
2000
).
Sink or swim: strategies for cost-efficient diving by marine mammals
.
Science
288
,
133
-
136
.
Zenteno-Savin
,
T.
,
St. Leger
,
J.
and
Ponganis
,
P. J.
(
2010
).
Hypoxemic and ischemic tolerance in emperor penguins
.
Comp. Biochem. Physiol. C Toxicol. Pharmacol.
152
,
18
-
23
.

Competing interests

The authors declare no competing or financial interests.