Sauntering along the road, it's hard to appreciate the complex interplay of forces that propel us along. And the situation becomes even more complex when trying to understand how fish swim. It is impossible to directly measure the forces that they exert on their surrounding fluid, which is why scientists have turned to vast and complex computational models to calculate how adult fish interact with their environment. However, no one had tried to tackle how tiny fish larvae propel themselves through water, which is relatively sticky on their diminutive scale. Working with collaborators from the Netherlands and the USA, Hao Liu from Chiba University, Japan, built a computational model that predicts the forces that propel the fish through water based on accurate measurements of the larvae's movements provided by Ulrike Müller (p. 4015). Simulating regular undulatory swimming and a specialised escape response, known as the C-start, the team were able to accurately reproduce the complex fluid flows produced by the fish in real life in their computational simulation and show that the larvae produce thrust with their rear ends. The team was also able to exaggerate the larvae's swimming style, simulating unnaturally large and small undulations, successfully reproducing how the tiny fish's speed increased. In addition, the team found that as the larvae's speed increased, the animals had to put in proportionately more effort – the mechanical power quadrupled – although their efficiency hardly improved, increasing their cost of transport dramatically.
ZEBRAFISH LARVAE HAVE TO WORK HARDER TO SWIM FASTER
Kathryn Knight; ZEBRAFISH LARVAE HAVE TO WORK HARDER TO SWIM FASTER. J Exp Biol 15 November 2012; 215 (22): iii. doi: https://doi.org/10.1242/jeb.081299
Download citation file:
Advertisement
Cited by
Sensory perception in a changing world – join us in Liverpool in March 2025
We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the JEB Symposium Sensory Perception in a Changing World and the SEB satellite meeting. Find out more and register to join us in March 2025 in Liverpool, UK. Submit your abstract by 17 January 2025. Early-bird registration ends on 17 January 2025.
Extraordinary creatures: mantis shrimp
In our new Conversation series focusing on extraordinary creatures, Tom Cronin and Sheila Patek tell us about the incredible biology of mantis shrimp, from their complex vision to their powerful striking abilities.
Behaviour as a physiological process
In this Commentary, Shamil Debaere & colleagues argue the case for integration of behaviour into animal physiology, and advocate for behaviour to be considered as a physiological process.
Tiny ring-necked snakes keep warm heads despite their size
Some ectotherms are able to raise the temperature of certain body parts above the temperature of other regions & now Christian Fox and Albert Chung, with undergraduates from the University of Virginia, reveal that the heads of tiny ring-necked snakes can be 2.1C warmer than their tails, even though they are only 20cm long.