Swimming movements in boxfishes were much more complex and varied than classical descriptions indicated. At low to moderate rectilinear swimming speeds (<5 TL s(−1), where TL is total body length), they were entirely median- and paired-fin swimmers, apparently using their caudal fins for steering. The pectoral and median paired fins generate both the thrust needed for forward motion and the continuously varied, interacting forces required for the maintenance of rectilinearity. It was only at higher swimming speeds (above 5 TL s(−1)), when burst-and-coast swimming was used, that they became primarily body and caudal-fin swimmers. Despite their unwieldy appearance and often asynchronous fin beats, boxfish swam in a stable manner. Swimming boxfish used three gaits. Fin-beat asymmetry and a relatively non-linear swimming trajectory characterized the first gait (0--1 TL s(−1)). The beginning of the second gait (1--3 TL s(−1)) was characterized by varying fin-beat frequencies and amplitudes as well as synchrony in pectoral fin motions. The remainder of the second gait (3--5 TL s(−1)) was characterized by constant fin-beat amplitudes, varying fin-beat frequencies and increasing pectoral fin-beat asynchrony. The third gait (>5 TL s(−1)) was characterized by the use of a caudal burst-and-coast variant. Adduction was always faster than abduction in the pectoral fins. There were no measurable refractory periods between successive phases of the fin movement cycles. Dorsal and anal fin movements were synchronized at speeds greater than 2.5 TL s(−1), but were often out of phase with pectoral fin movements.
Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics
J.R. Hove, L.M. O'Bryan, M.S. Gordon, P.W. Webb, D. Weihs; Boxfishes (Teleostei: Ostraciidae) as a model system for fishes swimming with many fins: kinematics. J Exp Biol 15 April 2001; 204 (8): 1459–1471. doi: https://doi.org/10.1242/jeb.204.8.1459
Download citation file:
Advertisement
Cited by
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4510)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4510)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.