When the spermatozoon of Echinus esculentus swims in sea water containing methyl cellulose (viscosity 1.5-4 Pa s), its flagellum may generate either a helical or a planar waveform, each type being stable. The helical wave, which is dextral, is complicated by the concurrent passage of miniature waves along it. These miniature waves have a pulsatile origin in the neck region of the spermatozoon. Our videotape analysis indicates that there are two pulses of mechanical activity for each true cycle of the helical wave. (The true helical frequency was obtained from the apparent wave frequency and the roll frequency of the sperm head, the latter being detectable in some sperm when lit stroboscopically.) The planar wave has a meander shape. During the propagation of planar waves, the sliding displacements are adjustable in either direction; moribund flagella can undergo unrestricted sliding. The planar waves are, in fact, exactly planar only at interfaces. Otherwise, there tend to be torsions in the interbend segments between planar bends. Mechanical stimulation of the flagellum can cause a sudden transition from the helical to the planar waveform. To account for the two modes of beating, we advance the hypothesis that circumferential linkages yield beyond a threshold strain. Whether this yield point is exceeded, we suggest, depends upon the balance between the active shear force and the external viscosity (among other factors). We propose that a subthreshold force originates in one array and then triggers the other dynein arrays circumferentially, but unidirectionally, around the base of the flagellum; whereas a suprathreshold force provokes bi-directional circumferential triggering. These may be the two patterns of activation that result in helical and planar waveforms, respectively. The transition from helical to planar bending may result from an increment in the force produced by the dynein motors. The pulsatile origin of the helical wave resembles behaviour described previously for spermatozoa of Ciona intestinalis and of the quail Coturnix coturnix.

Bannai
J.
,
Yoshimura
M.
,
Takahashi
K.
,
Shingyoji
C.
(
2000
).
Calcium regulation of microtubule sliding in reactivated sea urchin sperm flagella.
J. Cell Sci
113
,
831
–.
Bozkurt
H. H.
,
Woolley
D. M.
(
1993
).
Morphology of nexin links in relation to interdoublet sliding in the sperm flagellum.
Cell Motil. Cytoskel
24
,
109
–.
Bradfield
J. R. G.
(
1955
).
Fibre patterns in animal flagella and cilia.
Symp. Soc. Exp. Biol
9
,
306
–.
Brokaw
C. J.
(
1965
).
Non-sinusoidal bending waves of sperm flagella.
J. Exp. Biol
43
,
155
–.
Brokaw
C. J.
(
1966
).
Effects of increased viscosity on the movements of some invertebrate spermatozoa.
J. Exp. Biol
45
,
113
–.
Brokaw
C. J.
(
1975
).
Effects of viscosity and ATP concentration on the movement of reactivated sea-urchin sperm flagella.
J. Exp. Biol
62
,
701
–.
Brokaw
C. J.
(
1988
).
Bending-wave propagation by microtubules and flagella.
Math. Biosci
90
,
247
–.
Brokaw
C. J.
(
1996
).
Microtubule sliding, bend initiation and bend propagation parameters of Ciona sperm flagella altered by viscous load.
Cell Motil. Cytoskel
33
,
6
–.
Buller
A. H. R.
(
1902
).
Is chemotaxis a factor in the fertilization of the eggs of animals? Q. J. Microsc.
Sci
46
,
145
–.
Chwang
A. T.
,
Wu
T. Y.
(
1971
).
A note on the helical movement of micro-organisms.
Proc. R. Soc. Lond. B
178
,
327
–.
Gibbons
I. R.
(
1963
).
Studies on the protein components of cilia from Tetrahymena pyriformis.
Proc. Natl. Acad. Sci. USA
50
,
1002
–.
Gibbons
I. R.
(
1982
).
Sliding and bending in sea urchin sperm flagella.
Symp. Soc. Exp. Biol
35
,
225
–.
Gibbons
I. R.
,
Shingyoji
C.
,
Murakami
A.
,
Takahashi
K.
(
1987
).
Spontaneous recovery after experimental manipulation of the plane of beat in sperm flagella.
Nature
325
,
351
–.
Gray
J.
(
1955
).
The movement of sea-urchin spermatozoa.
J. Exp. Biol
32
,
775
–.
Hiramoto
Y.
,
Baba
S. A.
(
1978
).
A quantitative analysis of flagellar movement in echinoderm spermatozoa.
J. Exp. Biol
76
,
85
–.
Holwill
M. E. J.
,
Cohen
H. J.
,
Satir
P.
(
1979
).
A sliding microtubule model incorporating axonemal twist and compatible with three-dimensional ciliary bending.
J. Exp. Biol
78
,
265
–.
Ishijima
S.
,
Hamaguchi
Y.
(
1993
).
Calcium ion regulation of chirality of beating flagellum of reactivated sea urchin spermatozoa.
Biophys. J
65
,
1445
–.
Ishijima
S.
,
Hiramoto
Y.
(
1994
).
Flexural rigidity of echinoderm sperm flagella.
Cell Struct. Funct
19
,
349
–.
Ishijima
S.
,
Ishijima
S. I.
,
Afzelius
B. A.
(
1994
).
Movement of Myzostomum spermatozoa: calcium ion regulation of swimming direction.
Cell Motil. Cytoskel
28
,
135
–.
Ishijima
S.
,
Sekiguchi
K.
,
Hiramoto
Y.
(
1988
).
Comparative study of the beat patterns of American and Asian horseshoe crabsperm: evidence for a role of the central pair complex in forming planar waveforms in flagella
.
Cell Motil. Cytoskel
.
9
,
264
270
.
Jarosch
R.
(
1986
).
The mechanical behaviour of doublet microtubules simulated by helical models.
Cell Motil. Cytoskel
6
,
209
261
.
Kamiya
R.
,
Okagaki
T.
(
1986
).
Cyclical bending of two outer-doublet microtubules in frayed axonemes of Chlamydomonas.
Cell Motil. Cytoskel
6
,
580
–.
Minoura
I.
,
Yagi
T.
,
Kamiya
R.
(
1999
).
Direct measurement of inter-doublet elasticity in flagellar axonemes.
Cell Struct. Funct
24
,
27
–.
Murase
M.
,
Shimizu
H.
(
1986
).
A model of flagellar movement based on co-operative dynamics of dynein—tubulin cross-bridges.
J. Theor. Biol
119
,
409
–.
Rikmenspoel
R.
(
1978
).
Movement of sea urchin sperm flagella.
J. Cell Biol
76
,
311
–.
Rothschild
Lord
,
Swann
M. M.
(
1949
).
The fertilization reaction in the sea urchin egg.
J. Exp. Biol
26
,
164
–.
Shingyoji
C.
,
Gibbons
I. R.
,
Murakami
A.
,
Takahashi
K.
(
1991
).
Effect of imposed head vibration on the stability and waveform of flagellar beating in sea urchin spermatozoa.
J. Exp. Biol
156
,
63
–.
Shingyoji
C.
,
Katada
J.
,
Takahashi
K.
,
Gibbons
I. R.
(
1991
).
Rotating the plane of imposed vibration can rotate the plane flagellar beating in sea-urchin sperm without twisting the axoneme.
J. Cell Sci
98
,
175
–.
Shingyoji
C.
,
Murakami
A.
,
Takahashi
K.
(
1977
).
Local reactivation of Triton-extracted flagella by iontophoretic application of ATP.
Nature
265
,
269
–.
Silvester
N. R.
,
Holwill
M. E. J.
(
1972
).
An analysis of hypothetical flagellar waveforms.
J. Theor. Biol
35
,
505
–.
Suarez
S. S.
(
1996
).
Hyperactivated motility in sperm.
J. Androl
17
,
331
–.
Takahashi
K.
,
Shingyoji
C.
,
Kamimura
S.
(
1982
).
Microtubule sliding in reactivated flagella.
Symp. Soc. Exp. Biol
35
,
159
–.
Vernon
G. G.
,
Woolley
D. M.
(
1995
).
The propagation of a zone of activation along groups of flagellar doublet microtubules.
Exp. Cell Res
220
,
482
–.
Vernon
G. G.
,
Woolley
D. M.
(
1999
).
Three-dimensional motion of avian spermatozoa.
Cell Motil. Cytoskel
42
,
149
–.
Wais-Steider
J.
,
Satir
P.
(
1979
).
Effect of vanadate on gill cilia: switching mechanism in ciliary beat.
J. Supramol. Struct
11
,
339
–.
Warner
F. D.
(
1983
).
Organization of interdoublet links in Tetrahymena cilia.
Cell Motil
3
,
321
–.
Warner
F. D.
,
Satir
P.
(
1974
).
The structural basis of ciliary bend function. Radial spoke positional changes accompanying microtubule sliding.
J. Cell Biol
63
,
35
–.
Woolley
D. M.
(
1977
).
Evidence for ‘twisted plane’ undulations in golden hamster sperm tails.
J. Cell Biol
75
,
851
–.
Woolley
D. M.
(
1995
).
The extrusion of membranous threads by avian and mammalian spermatozoa, in vitro.
J. Submicrosc. Cytol. Pathol
27
,
281
–.
Woolley
D. M.
(
1998
).
Studies on the eel sperm flagellum. 3. Vibratile motility and rotatory bending.
Cell Motil. Cytoskel
39
,
246
–.
Woolley
D. M.
(
2000
).
The molecular motors of cilia and eukaryotic flagella.
Essays Biochem
35
,
103
–.
Woolley
D. M.
,
Bozkurt
H. H.
(
1995
).
The distal sperm flagellum: its potential for motility after separation from the basal structures.
J. Exp. Biol
198
,
1469
–.
Woolley
D. M.
,
Osborn
I. W.
(
1984
).
Three-dimensional geometry of motile hamster spermatozoa.
J. Cell Sci
67
,
159
–.
Woolley
D. M.
,
Vernon
G. G.
(
1999
).
Alternating torsions in a living ‘9+2′ flagellum.
Proc. R. Soc. Lond. B
266
,
1271
–.
Yeung
C. H.
,
Woolley
D. M.
(
1983
).
A study of bend formation in locally reactivated hamster sperm flagella.
J. Muscle Res. Cell Motil
4
,
625
–.
This content is only available via PDF.