Little is known of the action of nitric oxide (NO) at the synaptic level on identified interneurones in local circuits that process mechanosensory signals. Here, we examine the action of NO in the terminal abdominal ganglion of the crayfish Pacifastacus leniusculus, where it has modulatory effects on the synaptic inputs of 17 identified ascending interneurones mediated by electrical stimulation of a sensory nerve. To analyse the role of NO in the processing of sensory signals, we bath-applied the NO donor SNAP, the NO scavenger PTIO, the nitric oxide synthase (NOS) inhibitor l-NAME, the NOS substrate l-arginine, a cyclic GMP (cGMP) analogue, 8-Br-cGMP, and the soluble guanylate cyclase (sGC) inhibitor ODQ. The effects of these chemicals on the synaptic inputs of the interneurones could be divided into two distinct classes. The NO donor SNAP enhanced the inputs to one class of interneurone (class 1) and depressed those to another (class 2). Neither the inactive isomer NAP nor degassed SNAP had any effect on the inputs to these same classes of interneurone. The NO scavenger PTIO caused the opposite effects to those of the NO donor SNAP, indicating that endogenous NO may have an action in local circuits. Preventing the synthesis of NO using l-NAME had the opposite effect to that of SNAP on each response class of interneurone. Increasing the synthesis of endogenous NO by applying l-arginine led to effects on both response classes of interneurone similar to those of SNAP. Taken together, these results suggested that NO was the active component in mediating the changes in amplitude of the excitatory postsynaptic potentials. Finally, the effects of 8-Br-cGMP were similar to those of the NO donor, indicating the possible involvement of a NO-sensitive guanylate cyclase. This was confirmed by preventing the synthesis of cGMP by sGC using ODQ, which caused the opposite effects to those of 8-Br-cGMP on the two response classes of interneurone. The results indicate that a NO-cGMP signal transduction pathway, in which NO regulates transmitter release from mechanosensory afferents onto intersegmental ascending interneurones, is probably present in the local circuits of the crayfish.

Aonuma
H.
,
Nagayama
T.
,
Takahata
M.
(
2000
).
Modulatory effects of nitric oxide on synaptic depression in the crayfish neuromuscular system.
J. Exp. Biol
203
,
3595
–.
Bicker
G.
,
Schmachtenberg
O.
,
Vente
J. D.
(
1996
).
The nitric oxide/cyclic GMP messenger system in olfactory pathways of the locust brain.
Eur. J. Neurosci
8
,
2635
–.
Bredt
D. S.
,
Snyder
S. H.
(
1989
).
Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum.
Proc. Natl. Acad. Sci. USA
86
,
9030
–.
Bredt
D. S.
,
Snyder
S. H.
(
1992
).
Nitric oxide, a novel neuronal messenger.
Neuron
8
,
3
–.
Brune
B.
,
Lapetina
E. G.
(
1989
).
Activation of a cytosolic ADP-ribosyltransferase by nitric oxide-generating agents.
J. Biol. Chem
264
,
8455
–.
Dickinson
P.
,
Mecsas
C.
,
Marder
E.
(
1990
).
Neuropeptide fusion of two motor pattern generator circuits.
Nature
344
,
155
–.
East
S. J.
,
Garthwaite
J.
(
1991
).
NMDA receptor activation in rat hippocampus induces cyclic GMP formation through the L-arginine—nitric oxide pathway.
Neurosci. Lett
123
,
17
–.
Elphick
M.
,
Green
R. I. C.
,
O'Shea
M.
(
1993
).
Nitric oxide synthesis and action in an invertebrate brain.
Brain Res
69
,
344
–.
Elphick
M. R.
,
Williams
L.
,
O'Shea
M.
(
1996
).
New features of the locust optic lobe: evidence of a role for nitric oxide in insect vision.
J. Exp. Biol
199
,
2395
–.
Elson
R. C.
,
Selverston
A. I.
(
1992
).
Mechanisms of gastric rhythm generation in the isolated stomatogastric ganglion of spiny lobsters: bursting pacemaker potentials, synaptic interactions and muscarinic modulation.
J. Neurophysiol
68
,
890
–.
Garthwaite
J.
,
Charles
S. L.
,
Chess-Williams
R.
(
1988
).
Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain.
Nature
336
,
385
–.
Garthwaite
J.
,
Garthwaite
G.
,
Palmer
R. M. J.
,
Moncada
S.
(
1989
).
NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices.
Eur. J. Pharmac
172
,
413
–.
Garthwaite
J.
,
Southam
E.
,
Boulton
C. L.
,
Nielson
E. B.
,
Schmidt
K.
(
1995
).
Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one.
Mol. Pharmac
48
,
184
–.
Gelperin
A.
(
1994
).
Nitric oxide mediates network oscillations of olfactory interneurones in a terrestrial mollusc.
Nature
369
,
61
–.
Harris-Warwick
R. M.
,
Marder
E.
(
1991
).
Modulation of neural networks for behavior.
Annu. Rev. Neurosci
14
,
39
–.
Johansson
K. U. I.
,
Carlberg
M.
(
1994
).
NADPH-diaphorase histochemistry and nitric oxide synthase activity in deutocerebrum of the crayfish, Pacifastacus leniusculus (Crustacea, Decapoda).
Brain Res
649
,
36
–.
Kennedy
D.
(
1971
).
Crayfish interneurons.
Physiologist
14
,
5
–.
Kennedy
D.
,
Calabrese
R. L.
,
Wine
J. J.
(
1974
).
Presynaptic inhibition: primary afferent depolarization in crayfish neurones.
Science
196
,
451
–.
Kiehn
O.
,
Harris-Warrick
R. M.
(
1992
).
5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neurone.
J. Neurophysiol
68
,
496
–.
Koh
H.-Y.
,
Jacklet
J. W.
(
1999
).
Nitric oxide stimulates cGMP production and mimics synaptic responses in metacerebral neurons of Aplysia.
J. Neurosci
19
,
3818
–.
Lee
H. C.
,
Galione
A.
,
Walseth
T. F.
(
1994
).
Cyclic ADP-ribose: metabolism and calcium mobilizing function.
Vitamin Hormones
48
,
199
–.
Miki
N.
,
Kawabe
Y.
,
Kuriyama
K.
(
1977
).
Activation of cerebral guanylate cyclase by nitric oxide.
Biochem. Biophys. Res. Commun
75
,
851
–.
Moncada
S.
,
Palmer
R. M. J.
,
Higgs
E. A.
(
1991
).
Nitric oxide: physiology, pathophysiology and pharmacology.
Pharmac. Rev
43
,
109
–.
Moroz
L. L.
,
Park
J.-H.
,
Winlow
W.
(
1993
).
Nitric oxide activates buccal motor patterns in Lymnaea stagnalis.
NeuroReport
4
,
643
–.
Muller
U.
,
Hildebrandt
H.
(
1995
).
The nitric oxide/cGMP system in the antennal lobe of Apis mellifera in integrative processing of chemosensory stimuli.
Eur. J. Neurosci
7
,
2240
–.
Murad
F.
,
Mittal
C. K.
,
Arnold
W.
,
Katsuki
S.
,
Kimura
H.
(
1978
).
Guanylate cyclase: activation by azide, nitro compounds, nitric oxide and hydroxyl radical and inhibition by haemoglobin and myoglobin.
Adv. Cyclic Nucleotide Res
9
,
145
–.
Nagayama
T.
,
Namba
H.
,
Aonuma
H.
(
1994
).
Morphological and physiological bases of crayfish local circuit neurones.
Histol. Histopathol
9
,
791
–.
Newland
P. L.
,
Aonuma
H.
,
Sato
M.
,
Nagayama
T.
(
1996
).
Presynaptic inhibition of exteroceptive inputs by proprioceptive afferents in the terminal abdominal ganglion of the crayfish.
J. Neurophysiol
76
,
1047
–.
O'Shea
M.
,
Colbert
R.
,
Williams
L.
,
Dunn
S.
(
1998
).
Nitric oxide compartments in the mushroom bodies of the locust brain.
NeuroReport
9
,
333
–.
Ott
S. R.
,
Burrows
M.
(
1998
).
Nitric oxide synthase in the thoracic ganglia of the locust: Distribution in the neuropiles and morphology of neurones.
J. Comp. Neurol
395
,
217
–.
Ott
S. R.
,
Burrows
M.
(
1999
).
NADPH diaphorase histochemistry in the thoracic ganglia of locusts, crickets and cockroaches: species differences and the impact of fixation.
J. Comp. Neurol
410
,
387
–.
Park
J.-H.
,
Straub
V.
,
O'Shea
M.
(
1998
).
Anterograde signalling by nitric oxide: characterization and in vitro reconstitution of an identified nitrergic synapse.
J. Neurosci
18
,
5463
–.
Philippedes
A.
,
Husbands
P.
,
O'Shea
M.
(
2000
).
Four-dimensional neuronal signalling by nitric oxide: a computational analysis.
J. Neurosci
20
,
1199
–.
Rashatwar
S. S.
,
Cornwell
T. L.
,
Lincoln
T. M.
(
1987
).
Effects of 8-bromo-cGMP on Ca2+levels in vascular smooth muscle cells: possible regulation of Ca2+-ATPase by cGMP-dependent protein kinase.
Proc. Natl. Acad. Sci. USA
84
,
5685
–.
Rudomin
P.
(
1990
).
Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord.
Trends Neurosci
13
,
499
–.
Schmidt
R. F.
(
1971
).
Presynaptic inhibition in the vertebrate central nervous system.
Ergeb. Physiol. Biol. Chem. Exp. Pharmak
63
,
20
–.
Scholtz
N. L.
,
Chang
E. S.
,
Graubard
K.
,
Truman
J. W.
(
1998
).
The NO/cGMP pathway and the development of neural networks in postembryonic lobsters.
J. Neurobiol
34
,
208
–.
Schuman
E. M.
,
Madison
D. V.
(
1994
).
Nitric oxide and synaptic function.
Annu. Rev. Neurosci
17
,
153
–.
Southam
E.
,
Garthwaite
J.
(
1991
).
Comparative effects of some nitric oxide donors on cyclic GMP levels in rat cerebellar slices.
Neurosci. Lett
130
,
107
–.
Stewart
W. W.
(
1978
).
Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer.
Cell
14
,
741
–.
Stuehr
D. J.
,
Griffith
O. W.
(
1992
).
Mammalian nitric oxide synthases.
Adv. Enzymol
65
,
287
–.
Talavera
E.
,
Martinezlorenzana
G.
,
Leonolea
M.
,
Sanchezalvarez
M.
,
Sanchezislas
E.
,
Pellicer
F.
(
1995
).
Histochemical distribution of NADPH-diaphorase in the cerebral ganglion of the crayfish Cambarellus montezumae.
Neurosci. Lett
187
,
177
–.
Truman
J. W.
,
DeVente
J.
,
Ball
E. E.
(
1996
).
Nitric oxide-sensitive guanylate cyclase activity is associated with the maturational phase of neuronal development in insects.
Development
122
,
3949
–.
van Harreveld
A.
(
1936
).
A physiological solution for freshwater crustaceans.
Proc. Soc. Exp. Biol
34
,
428
–.
Vincent
S. R.
,
Kimura
H.
(
1993
).
Histochemical mapping of nitric oxide synthase in the rat brain.
Neurosci
46
,
755
–.
Williams
M. B.
,
Li
X.
,
Gu
X.
,
Jope
R. S.
(
1992
).
Modulation of endogenous ADP-ribosylation in rat brain.
Brain Res
592
,
49
–.
Zucker
R. S.
(
1972
).
Crayfish escape behaviour and central synapses. I. Neural circuit exciting lateral giant fiber.
J. Neurophysiol
35
,
599
–.
This content is only available via PDF.