Gills are the primary organ for salt transport, but in land crabs they are removed from water and thus ion exchanges, as well as CO(2) and ammonia excretion, are compromised. Urinary salt loss is minimised in land crabs by redirecting the urine across the gills where salt reabsorption occurs. Euryhaline marine crabs utilise apical membrane branchial Na(+)/H(+) and Cl(−)/HCO(3)(−) exchange powered by a basal membrane Na(+)/K(+)-ATPase, but in freshwater crustaceans an apical V-ATPase provides for electrogenic uptake of Cl(−) in exchange for HCO(3)(−). The HCO(3)(−) is provided by carbonic anhydrase facilitating CO(2) excretion while NH(4)(+) can substitute for K(+) in the basal ATPase and for H(+) in the apical exchange. Gecarcinid land crabs and the terrestrial anomuran Birgus latro can lower the NaCl concentration of the urine to 5 % of that of the haemolymph as it passes across the gills. This provides a filtration-reabsorption system analogous to the vertebrate kidney. Crabs exercise hormonal control over branchial transport processes. Aquatic hyper-regulators release neuroamines from the pericardial organs, including dopamine and 5-hydroxytryptamine (5-HT), which via a cAMP-mediated phosphorylation stimulate Na(+)/K(+)-ATPase activity and NaCl uptake. Freshwater species utilise a V-ATPase, and additional mechanisms of control have been suggested. Crustacean hyperglycaemic hormone (CHH) has now also been confirmed to have effects on hydromineral regulation, and a putative role for neuropeptides in salt and water balance suggests that current models for salt regulation are probably incomplete. In a terrestrial crabs there may be controls on both active uptake and diffusive loss. The land crab Gecarcoidea natalis drinking saline water for 3 weeks reduced net branchial Na(+) uptake but not Na(+)/K(+)-ATPase activity, thus implying a reduction in diffusive Na(+) loss. Further, in G. natalis Na(+) uptake and Na(+)/K(+)-ATPase were stimulated by 5-HT independently of cAMP. Conversely, in the anomuran B. latro, branchial Na(+) and Cl(−) uptake and Na(+)/K(+)-ATPase are inhibited by dopamine, mediated by cAMP. There has been a multiple evolution of a kidney-type system in terrestrial crabs capable of managing salt, CO(2) and NH(3) movements.

REFERENCES

Bliss
D. E.
(
1968
).
Transition from water to land in decapod crustaceans.
Amer. Zool
8
,
355
–.
Charmantier
G.
,
Charmantier-Daures
M.
,
Aiken
D. E.
(
1984
).
Neuroendocrine control of hydromineral regulation in the American lobster, Homarus americanus (H. Milne-Edwards, 1837) (Crustacea, Decapoda). 1.
Juveniles. Gen. Comp. Endocrinol
54
,
8
–.
Corotto
F. S.
,
Holliday
C. W.
(
1996
).
Branchial Na,K-ATPase and osmoregulation in the purple shore crab, Hemigrapsus nudus (Dana).
Comp. Biochem. Physiol
113
,
361
–.
Dela-Cruz
J.
,
Morris
S.
(
1997
).
Water and ion balance and nitrogenous excretion as limitations to terrestrial excursion in the Christmas Island blue crab, Cardisoma hirtipes (Dana).
J. Exp. Zool
279
,
537
–.
De Vries
M. C.
,
Wolcott
D. L.
(
1993
).
Gaseous ammonia evolution is coupled to reprocessing of urine at the gills of ghost crabs.
J. Exp. Zool
267
,
97
–.
Eckhardt
E.
,
Pierrot
C.
,
Thuet
P.
,
Van Herp
F.
,
Charmantier-Daures
M.
,
Trilles
J. P.
,
Charmantier
G.
(
1995
).
Stimulation of osmoregulating processes in the perfused gill of theFig.7. Primary urine production by Gecarcoidea natalis provided with drinking water (filled columns) or deprived of water for 3 days (open columns). The crabs were maintained under field conditions on Christmas Island and were injected with saline or 5-hydroxytryptamine (5-HT) (610 4moll1at 1.5 lg1) every 8h for 3 days. The urine production rate was determined by the clearance of [57Cr]EDTA (for methods see Morris and van Aardt, 1998) (N =8). Values are means ±S.E.M.Saline Saline 5-HT5-HTNo drinking waterDrinking waterPrimary urine clearance (ml kg-1 h-1)3.54.55.56.57.5 988crab Pachygrapsus marmoratus (Crustacea, Decapoda) by a sinus gland peptide.
Gen. Comp. Endocrinol
99
,
169
–.
Farrelly
C. A.
,
Greenaway
P.
(
1987
).
The morphology and vasculature of the lungs and gills of the Soldier Crab, Mictyris longicarpus (Latreille).
J. Morph
193
,
285
–.
Farrelly
C. A.
,
Greenaway
P.
(
1993
).
Land crabs with smooth lungs: Grapsidae, Gecarcinidae, and Sundathelphusidae ultrastructure and vasculature.
J. Morph
215
,
245
–.
Greenaway
P.
,
Morris
S.
(
1989
).
Adaptations to a terrestrial existence by the Robber Crab, Birgus latro. III. Nitrogenous excretion.
J. Exp. Biol
143
,
333
–.
Greenaway
P.
,
Morris
S.
,
McMahon
B. R.
(
1988
).
Adaptations to a terrestrial existence by the Robber Crab Birgus latro. II. In vivo respiratory gas exchange and transport.
J. Exp. Biol
140
,
493
–.
Henry
R. P.
(
1984
).
The role of carbonic anhydrase in blood ion and acid—base regulation.
Amer. Zool
24
,
241
–.
Henry
R. P.
(
1988
).
Multiple functions of carbonic anhydrase in the crustacean gill.
J. Exp. Zool
248
,
19
–.
Henry
R. P.
(
1991
).
Branchial and branchiostegite carbonic anhydrase in decapod crustaceans: The aquatic to terrestrial transition.
J. Exp. Zool
259
,
294
–.
Henry
R. P.
,
Cameron
J. N.
(
1982
).
Acid—base balance in Callinectes sapidus during acclimation from high to low salinity.
J. Exp. Biol
101
,
255
–.
Henry
R. P.
,
Cameron
J. N.
(
1982
).
The distribution and partial characterization of carbonic anhydrase in selected aquatic and terrestrial decapod crustaceans.
J. Exp. Zool
221
,
309
–.
Henry
R. P.
,
Wheatly
M. J.
(
1992
).
Interaction of respiration, ion regulation and acid—base balance in the everyday life of aquatic crustaceans.
Amer. Zool
32
,
407
–.
Hunter
K. C.
,
Kirschner
L. B.
(
1986
).
Sodium absorption coupled to ammonia excretion in osmoconforming marine invertebrates.
Am. J. Physiol
251
,
957
–.
Krippeit-Drews
P.
,
Drews
G.
,
Graszynski
K.
(
1989
).
Effects of ion substitution on the transepithelial potential difference of the gills of the fiddler crab Uca tangeri: evidence for a H+-pump in the apical membrane.
J. Comp. Physiol
159
,
43
–.
Lohrmann
D. M.
,
Kamemoto
F. I.
(
1987
).
The effect ofdibutyryl cAMP on sodium uptake by isolated perfused gills of Callinectes sapidus.
Gen. Comp. Endocrinol
65
,
300
–.
Lucu
C.
(
1990
).
Ionic regulatory mechanisms in crustacean gill epithelia.
Comp. Biochem. Physiol
97
,
297
–.
Mantel
L. H.
(
1985
).
Neurohormonal integration of osmotic and ionic regulation.
Amer. Zool
25
,
253
–.
Morris
S.
,
Greenaway
P.
(
1990
).
Adaptations to a terrestrial existence in the Robber Crab, Birgus latro VI. The activity of carbonic anhydrase in the gills and lungs.
J. Comp. Physiol
160
,
217
–.
Morris
S.
,
Greenaway
P.
,
Adamczewska
A. M.
,
Ahern
M. D.
(
2000
).
Adaptations to a terrestrial existence in the Robber Crab Birgus latro L. IX. Hormonal control of post-renal urine reprocessing and salt balance in the branchial chamber.
J. Exp. Biol
203
,
389
–.
Morris
S.
,
Taylor
H. H.
,
Greenaway
P.
(
1991
).
Adaptations to a terrestrial existence by the robber crab Birgus latro. VII. The branchial chamber and its role in urine reprocessing.
J. Exp. Biol
161
,
315
–.
Morris
S.
,
van Aardt
W. J.
(
1998
).
Salt and water relations, and nitrogen excretion, in the amphibious african freshwater crab Potamonautes warreni in water and in air.
J. Exp. Biol
201
,
883
–.
Onken
H.
,
Graszynski
K.
,
Zeiske
W.
(
1991
).
Na+-independent, electrogenic Cluptake across the posterior gills of the Chinese crab (Eriocheir sinensis): Voltage-clamp and microelectrode studies.
J. Comp. Physiol
161
,
293
–.
Pequeux
A.
,
Gilles
R.
(
1988
).
The transepithelial potential difference of isolated perfused gills of the Chinese crab Eriocheir sinensis acclimated to fresh water.
Comp. Biochem. Physiol
89
,
163
–.
Pierrot
C.
,
Eckhardt
E.
,
Van Herp
F.
,
Charmantier-Daures
M.
,
Charmantier
G.
,
Trilles
J. P.
,
Thuet
P.
(
1994
).
Effect ofS. MORRIS989 Ion regulation in land crabs sinus gland extracts on the osmoregulatory physiology of perfused gills from the crab Pachygrapsus marmoratus.
C. r. Acad. Sci. Ser. III Sci. Vie
317
,
411
–.
Piller
S. C.
,
Henry
R. P.
,
Doeller
J. E.
,
Kraus
D. W.
(
1995
).
A comparison of the gill physiology of two euryhaline crab species, Callinectes sapidus and Callinectes similis: energy production, transport-related enzymes and osmoregulation as a function of acclimation salinity.
J. Exp. Biol
198
,
349
–.
Randall
R. J.
,
Wood
C. W.
(
1981
).
Carbon dioxide excretion in the land crab (Cardisoma carnifex).
J. exp. Zool
218
,
37
–.
Riestenpatt
S.
,
Petrausch
G.
,
Siebers
D.
(
1995
).
Clinflux across posterior gills of the Chinese crab (Eriocheir sinensis) — potential energization by a V-type H+-ATPase.
Comp. Biochem. Physiol
110
,
235
–.
Sommer
M. J.
,
Mantel
L. H.
(
1988
).
Effect of dopamine, cyclic AMP, and pericardial organs on sodium uptake and Na/K-ATPase activity in gills of the green crab Carcinus maenas (L).
J. Exp. Zool
248
,
272
–.
Sommer
M. J.
,
Mantel
L. H.
(
1991
).
Effects of dopamine and acclimation to reduced salinity on the concentration of cyclic AMP in the gills of the green crab, Carcinus maenas (L).
Gen. Comp. End
82
,
364
–.
Stangier
J.
,
Dircksen
H.
,
Keller
R.
(
1986
).
Identification and immunocytochemical localization of proctolin in the pericardial organs of the shore crab Carcinus maenas.
Peptides
7
,
67
–.
Taylor
H. H.
,
Greenaway
P.
,
Morris
S.
(
1993
).
Adaptations to a terrestrial existence by the Robber Crab Birgus latro L. VIII.Osmotic and ionic regulation on freshwater and saline drinking regimens.
J. Exp. Biol
179
,
93
–.
Towle
D. W.
,
Holleland
T.
(
1987
).
Ammonium ion substitutes for K+in ATP-dependent Na+transport by basolateral membrane vesicles.
Am. J. Physiol
252
,
479
–.
Trausch
G.
,
Forget
M. C.
,
Devos
P.
(
1989
).
Bioamine-stimulated phosphorylation and (Na+,K+)-ATPase in the gills of the Chinese crab, Eriocheir sinensis.
Comp. Biochem. Physiol
94
,
487
–.
Varley
D. G.
,
Greenaway
P.
(
1994
).
Nitrogenous excretion in the terrestrial carnivorous crab Geograpsus grayi: site and mechanism of excretion.
J. Exp. Biol
190
,
179
–.
Wheatly
M. G.
,
Toop
T.
(
1989
).
Physiological responses of the crayfish Pacifastacus leniusculus to environmental hyperoxia. II. Role of the antennal gland in acid—base and ion regulation.
J. Exp. Biol
143
,
53
–.
Wolcott
D. L.
(
1991
).
Nitrogen excretion is enhanced during urine recycling in two species of terrestrial crab.
J. Exp. Zool
259
,
181
–.
Wolcott
T.
(
1992
).
Water and solute balance in the transition to land.
Amer. Zool
32
,
370
–.
Wood
C. M.
,
Boutilier
R. G.
,
Randall
D. J.
(
1986
).
The physiology of dehydration stress in the land crab, Cardisoma carnifex: respiration, ionoregulation, acid-base balance and nitrogenous waste excretion.
J. Exp. Biol
126
,
271
–.
Zare
S.
,
Greenaway
P.
(
1998
).
Ion transport and the effects of moulting in the freshwater crayfish Cherax destructor (Decapoda, Parastacidae).
Aust. J. Zool
45
,
539
–.
This content is only available via PDF.