In sea urchin embryos, the first specification of cell fate occurs at the fourth cleavage, when small cells (the micromeres) are formed at the vegetal pole. The fate of other blastomeres is dependent on the receipt of cell signals originating from the micromeres. The micromeres are fated to become skeletogenic cells and show the ability to induce the endoderm (the archenteron) in the neighbouring cells during the 16- to 60-cell stage. Several molecules involved in signaling pathways, i.e. Notch for mesoderm specification, bone morphogenic protein (BMP) for ectoderm specification and beta-catenin for endoderm specification, are spatially and temporally expressed during development. In the micromeres, beta-catenin increases and subsequently localizes to the nuclei under the regulation of TCF, a nuclear binding partner of beta-catenin, until the 60-cell stage. However, the mechanisms activating these signaling substances are still unclear. In this article, I demonstrate some specific properties of the membrane and cytoplasm of micromeres including new findings on intracellular Ca(2+) concentration, and propose a mechanism by which the functional micromeres are autonoumously formed. The possible roles of these in the specification of vegetal cell fate in early development are discussed.

Angerer
L. M.
,
Oleksyn
D. W.
,
Logan
C. Y.
,
McClay
D. R.
,
Dale
L.
,
Angere
R. C.
(
2000
).
A BMP pathway regulates cell fate allocation along the sea urchin animal—vegetal embryonic axis.
Development
127
,
1105
–.
Belanger
A. M.
,
Rustad
R. C.
(
1972
).
Movements of echinochrome granules during the early development of sea urchin eggs.
Nature New Biol
239
,
81
–.
Berridge
M. J.
(
1993
).
Inositol triphosphate and calcium signalling.
Nature
361
,
315
–.
Cabello
O. A.
,
Schilling
W. P.
(
1993
).
Vectorial Ca2+flux from the extracellular space to the endoplasmic reticulum via a restricted cytoplasmic component regulates inositol 1,4,5-triphosphate-stimulated release from internal stores in vascular endothelial cells.
Biochem. J
295
,
357
–.
Cavallo
R.
,
Rubenstein
D.
,
Peifer
M.
(
1997
).
Armadillo and dTce: a marriage made in the nucleus.
Curr. Opin. Genet. Dev
7
,
459
–.
Dale
B.
,
Yazaki
I.
,
Tosti
E.
(
1997
).
Polarized distribution of L-type calcium channels in early sea urchin embryos.
Am. J. Physiol
273
,
822
–.
Dan
K.
(
1954
).
The cortical movement in Arbacia punctulata eggs through cleavage cycles.
Embryologia
2
,
115
–.
Dan
K.
(
1960
).
Cyto-embryology of echinoderms and amphibia.
Int. Rev. Cytol
9
,
321
–.
Dan
K.
(
1979
).
Studies on unequal cleavage in sea urchins I. Migration of the nuclei to the vegetal pole.
Dev. Growth Differ
21
,
527
–.
Dan
K.
,
Endo
S.
,
Uemura
I.
(
1983
).
Studies on unequal cleavage in sea urchins II. Surface differentiation and the direction of nuclear migration.
Dev. Growth Differ
25
,
227
–.
Davidson
H.
(
1989
).
Lineage-specific gene expression and the regulative capacities of the sea urchin embryo: a proposed mechanism.
Development
105
,
421
–.
Dolmetsch
R. E.
,
Xu
K.
,
Lewis
R. S.
(
1998
).
Calcium oscillations increase the efficiency and specificity of gene expression.
Nature
392
,
933
–.
Emily-Fenouil
F.
,
Ghiglione
C.
,
Lhomond
G.
,
Lepage
T.
,
Gache
C.
(
1998
).
GSK3/shaggy mediates patterning along the animal—vegetal axis of the sea urchin embryo.
Development
125
,
2489
–.
Ettensohn
C. A.
,
McClay
D. R.
(
1988
).
Cell lineage conversion in the sea urchin embryo.
Dev. Biol
125
,
396
–.
Ettensohn
C. A.
(
1990
).
Cell interactions in the sea urchin embryo studied by fluorescence photoablation.
Science
248
,
247
–.
Giudice
G.
(
1995
).
Genes of the sea urchin embryo: an annotated list as of December 1994.
Dev. Growth Differ
37
,
221
–.
Giudice
G.
(
1999
).
Genes and their products in sea urchin development.
Curr. Top. Dev. Biol
45
,
41
–.
Hibino
T.
,
Nishikata
T.
,
Nishida
H.
(
1998
).
Centrosome-attracting body: a novel structure closely related to unequal cleavages in the ascidian embryo.
Dev. Growth Differ
40
,
85
–.
Horstadius
S.
(
1939
).
The mechanism of sea urchin development, studied by operative methods.
Biol. Rev. Camb. Phil. Soc
14
,
132
–.
Kim
L.
,
Liu
J.
,
Kimmel
A. R.
(
1999
).
The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification.
Cell
99
,
399
–.
Klein
P. S.
,
Melton
D. A.
(
1996
).
A molecular mechanism for the effect of lithium on development.
Proc. Natl. Acad. Sci. USA
93
,
8455
–.
Kubota
H. Y.
,
Yoshimoto
Y.
,
Hiramoto
Y.
(
1993
).
Oscillation of intracellular free calcium in cleaving and cleavage-arrested embryos of Xenopus laevis.
Dev. Biol
160
,
512
–.
Kuraishi
R.
(
1989
).
Structural and functional polarity of starfish blastomeres.
Dev. Biol
136
,
304
–.
Lee
J.
,
Ishihara
A.
,
Oxford
G.
,
Johnson
B.
,
Jacobson
K.
(
1999
).
Regulation of cell movement is mediated by stretch-activated calcium channels.
Nature
400
,
382
–.
Y.
(
1998
).
Cell-permeant caged InsP3 ester shows that Ca2+spike frequency can optimize gene expression.
Nature
392
,
936
–.
Livingston
B. T.
,
Wilt
F. H.
(
1990
).
Range and stability of cell fate determination in isolated sea urchin blastomeres.
Development
108
,
403
–.
Livingston
B. T.
,
Wilt
F. H.
(
1992
).
Phorbol esters alter cell fate during development of sea urchin embryos.
J. Cell Biol
119
,
1641
–.
Livingston
B. T.
,
Wilt
F. H.
(
1995
).
Injection of myo-inositol reverses the effects of lithium on sea urchin blastomeres.
Dev. Growth Differ
37
,
539
–.
Logan
C. Y.
,
Miller
J. R.
,
Ferkowicz
M. J.
,
McClay
D. R.
(
1999
).
Nuclear-catenin is required to specify vegetal cell fates in the sea urchin embryo.
Development
126
,
345
–.
Maruyama
Y. K.
,
Nakaseko
Y.
,
Yagi
S.
(
1985
).
Localization of cytoplasmic determinants responsible for primary mesenchyme formation and gastrulation in the unfertilized eggs of the sea urchin Hemicentrotus pulcherrimus.
J. Exp. Zool
236
,
155
–.
McPherson
S. M.
,
McPherson
P. S.
,
Mathews
L.
,
Cambell
K. P.
,
Longo
F. J.
(
1992
).
Cortical localization of a calcium release channel in sea urchin eggs.
J. Cell Biol
116
,
1111
–.
Mitsuyama
F.
,
Sawai
T.
,
Carafoli
E.
,
Furuichi
T.
,
Mikoshiba
K.
(
1999
).
Microinjection of Ca2+ store-enriched microsome fractions to dividing newt eggs induces extra-cleavage furrow viainositol 1,4,5-triphosphate-induced Ca2+release.
Dev. Biol
214
,
160
–.
Miyazaki
S.
,
Shirakawa
H.
,
Nakada
K.
,
Honda
Y.
(
1993
).
Essential role of the inositol 1,4,5-triphosphate receptor Ca2+release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs.
Dev. Biol
158
,
62
–.
Nishikata
T.
,
Hibino
T.
,
Nishida
H.
(
1999
).
The centrosome-attracting body, microtuble system, and posterior egg cytoplasm are involved in positioning of cleavage planes in the ascidian embryo.
Dev. Biol
209
,
72
–.
Nocente-McGrath
C.
,
Brenner
C. A.
,
Ernst
S. G.
(
1989
).
Endo 16, a lineage specific protein of the sea urchin embryo, is first expressed just prior to gastrulation.
Dev. Biol
136
,
264
–.
Nocente-McGrath
C.
,
McIsaac
R.
,
Ernst
S. G.
(
1991
).
Altered cell fate in LiCl-treated sea urchin embryos.
Dev. Biol
147
,
445
–.
Okazaki
K.
(
1975
).
Spicule formation by isolated micromeres of the sea urchin embryo.
Am. Zool
15
,
567
–.
Paul
M.
,
Johnston
R. N.
(
1978
).
Uptake of Ca2+is one of the earliest response to fertilization of sea urchin eggs.
J. Exp. Zool
203
,
143
–.
Ransick
A.
,
Davidson
E. H.
(
1993
).
A complete second gut induced by transplanted micromeres in the sea urchin embryo.
Science
259
,
1134
–.
Ransick
A.
,
Davidson
E. H.
(
1995
).
Micromeres are required for normal vegetal plate specification in sea urchin embryos.
Development
121
,
3215
–.
Sardet
C.
,
Gillot
I.
,
Ruscher
A.
,
Payan
P.
,
Girard
J. P.
,
de Renzis
G.
(
1992
).
Ryanodine activates sea urchin eggs.
Dev. Growth Differ
34
,
37
–.
Shen
S. S.
,
Buck
W. R.
(
1993
).
Source of calcium in sea urchin eggs during the fertilization response.
Dev. Biol
157
,
157
–.
Sherwood
D. R.
,
McClay
D. R.
(
1999
).
LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo.
Development
126
,
1703
–.
Speksnijder
J. E.
,
Corson
D. W.
,
Sardet
C.
,
Jaffe
L. F.
(
1989
).
Freecalcium pulse following fertilization in the ascidian egg.
Dev. Biol
135
,
182
–.
Speksnijder
J. E.
(
1992
).
The repetitive calcium waves in the fertilized ascidian egg are initiated near the vegetal pole by a cortical pacemaker.
Dev. Biol
153
,
259
–.
Stricker
S. A.
,
Silva
R.
,
Smythe
T.
(
1998
).
Calcium and endoplasmic reticulum dynamics during oocyte maturation and fertilization in the marine worm Cerebratulus lacteus.
Dev. Biol
203
,
305
–.
Tanaka
Y.
(
1976
).
Effects of the surfactants on the cleavage and further development of the sea urchin embryos I. The inhibition of micromere formation at the fourth cleavage.
Dev. Growth Differ
18
,
113
–.
Tanaka
Y.
(
1979
).
Effects of the surfactants on the cleavage and further development of the sea urchin embryos II. Disturbance in the arrangement of cortical vesicles and change in cortical appearance.
Dev. Growth Differ
21
,
331
–.
Terasaki
M.
,
Jaffe
L. A.
(
1991
).
Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization.
J. Cell Biol
114
,
929
–.
Terasaki
M.
,
Sardet
C.
(
1991
).
Demonstration of calcium uptake and release by sea urchin egg cortical endoplasmic reticulum.
J. Cell Biol
115
,
1031
–.
Vonica
A.
,
Weng
W. M.
,
Gumbiner
B. M.
,
Venuti
J. M.
(
2000
).
TCF is the nuclear effector of the-catenin signal that patterns the sea urchin animal—vegetal axis.
Dev. Biol
207
,
230
–.
Whitaker
M.
,
Patel
R.
(
1990
).
Calcium and cell cycle control.
Development
108
,
525
–.
Wikramanayake
A. H.
,
Huang
L.
,
Klein
W. H.
(
1998
).
-catenin is essential for patterning the maternally specified animal—vegetal axis in the sea urchin embryo.
Proc. Natl. Acad. Sci. USA
95
,
9343
–.
Yazaki
I.
(
1984
).
The egg originated and local distribution of the surface of sea-urchin embryo cells detected by immuno-fluorescence.
Acta Embryo. Morphol. Exp
5
,
3
–.
Yazaki
I.
(
1991
).
Polarization of the surface membrane and cortical layer of sea urchin blastomeres, and its inhibition by cytochalasin B.
Dev. Growth Differ
33
,
267
–.
Yazaki
I.
,
Tosti
E.
,
Dale
B.
(
1995
).
Cytoskeletal elements link calcium channel activity and the cell cycle in early sea urchin embryos.
Development
121
,
1827
–.
Yazaki
I.
,
Dale
B.
,
Tosti
E.
(
1999
).
Functional gap junctions in the early sea urchin embryo are located to the vegetal pole.
Dev. Biol
212
,
503
–.
This content is only available via PDF.