Hydrogen sulfide is generally accepted to be the energy source for the establishment of sulfur-oxidizing symbiotic communities. Here, we show that sulfur-storing symbioses not only consume but also produce large amounts of hydrogen sulfide. The prerequisite for this process appears to be the absence of oxygen. Anaerobic sulfide production is widespread among different thiotrophic symbioses from vent and non-vent sites (Riftia pachyptila, Calyptogena magnifica, Bathymodiolus thermophilus, Lucinoma aequizonata and Calyptogena elongata). The extent of H2S generation correlates positively with the amount of elemental sulfur stored in the symbiont-bearing tissues of the hosts. Sulfide production starts a few hours after anoxia sets in, with H2S initially accumulating in the circulatory system before it is excreted into the surrounding environment. We propose that not sulfate but the elemental sulfur deposited in the symbionts serves as a terminal electron acceptor during anoxia and is reduced to sulfide. In anoxia-tolerant symbioses such as L. aequizonata, anaerobic sulfur respiration may be important for producing maintenance energy to help the species survive several months without oxygen. The increased levels of cysteine in the gills of L. aequizonata may be caused by a lack of reoxidation due to the absence of oxygen.

Bauer-Nebelsick
M.
,
Ott
J.
(
1996
).
A symbiosis between thiotrophic bacteria and the ciliate Zoothamnium niveum.
Am. Zool
36
,
10
–.
Bernhard
J. M.
,
Buck
K. R.
,
Farmer
M. A.
,
Samuel
S. B.
(
2000
).
The Santa Barbara Basin is a symbiosis oasis.
Nature
403
,
77
–.
Brune
D. C.
(
1989
).
Sulfur oxidation by phototrophic bacteria.
Biochim. Biophys. Acta
975
,
189
–.
Cavanaugh
C. M.
,
Gardiner
S. L.
,
Jones
M. L.
,
Jannasch
H. W.
,
Waterbury
J. B.
(
1981
).
Prokaryotic cells in the hydrothermal vent tubeworm Riftia pachyptila: possible chemoautotrophic symbionts.
Science
213
,
340
–.
Childress
J. J.
,
Fisher
C. R.
,
Favuzzi
J. A.
,
Arp
A. J.
,
Oros
D. R.
(
1993
).
The role of a zinc-based, serum-born sulphide-binding component in the uptake and transport of dissolved sulphide by the chemoautotrophic symbiont-containing clam Calyptogena elongata.
J. Exp. Biol
179
,
131
–.
Corliss
J. B.
,
Dymond
J.
,
Dordon
L. I.
,
Edmond
J. M.
,
Herzen
R. P.
,
Ballard
R. P. V.
,
Green
R. D.
,
Williams
K.
,
Bainbridge
A.
,
Crane
K.
,
van Adel
T. H.
(
1979
).
Submarine thermal springs on the Galapagos Spreading Rift.
Science
203
,
1073
–.
Distel
D. L.
,
Felbeck
H.
(
1988
).
Pathways of inorganic carbon fixation in the endosymbiont-bearing lucinid clam Lucinoma aequizonata. I. Purification and characterization of endosymbiotic bacteria.
J. Exp. Zool
247
,
1
–.
Felbeck
H.
(
1981
).
Chemoautotrophic potential of the hydrothermal vent tubeworm, Riftia pachyptila Jones (Vestimentifera).
Science
213
,
336
–.
Friedrich
C. G.
(
1998
).
Physiology and genetics of sulfur-oxidizing bacteria.
Adv. Microb. Physiol
39
,
235
–.
Gilboa-Garber
N.
(
1971
).
Direct spectrophotometric determination of inorganic sulfide in biological materials and in other complex mixtures.
Analyt. Biochem
43
,
129
–.
Grieshaber
M. K.
,
Völkel
S.
(
1998
).
Animal adaptations for tolerance and exploitation of poisonous sulfide.
Annu. Rev. Physiol
60
,
33
–.
Gupta
R. S.
,
Golding
G. B.
(
1996
).
The origin of the eukaryotic cell.
Trends Biochem. Sci
21
,
166
–.
Hedderich
R.
,
Klimmek
O.
,
Kroeger
A.
,
Dirmeier
R.
,
Keller
M.
,
Stetter
K. O.
(
1999
).
Anaerobic respiration with elemental sulfur and with disulfides.
FEMS Microbiol. Rev
22
,
353
–.
Khan
A. A.
,
Yong
S.
,
Prior
M. G.
,
Lillie
L. E.
(
1991
).
750Cytotoxic effects of hydrogen sulfide on pulmonary alveolar macrophages in rats.
J. Toxicol. Env. Health
33
,
125
–.
Kredrich
N. M.
,
Tomkins
G. M.
(
1966
).
The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium.
J. Biol. Chem
241
,
4955
–.
Nelson
D. C.
,
Hagen
K. D.
(
1995
).
Physiology and biochemistry of symbiotic and free-living chemoautotrophic sulfur bacteria.
Am. Zool
35
,
91
–.
Pace
N. R.
(
1997
).
A molecular view of microbial diversity and the biosphere.
Science
276
,
734
–.
Pfennig
N.
,
Biebl
H.
(
1976
).
Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate oxidizing bacterium.
Arch. Microbiol
110
,
3
–.
Sasaki
T.
,
Otsuka
I.
(
1912
).
Experimentelle Untersuchungen ueber die Schwefelwasserstoffentwicklung der Bakterien aus Cystin und sonstigen Schwefelverbindungen.
Biochem. Z
39
,
208
–.
Schlossman
K.
,
Lynen
F.
(
1957
).
Biosynthese des Cysteins aus Serin und Schwefelwasserstoff.
Biochem. Z
328
,
591
–.
Schmidt
T. M.
,
Arieli
B.
,
Cohen
Y.
,
Padan
E.
,
Strohl
W. R.
(
1987
).
Sulfur metabolism in Beggiatoa alba.
J. Bacteriol
169
,
5466
–.
Searcy
D. G.
,
Lee
S. H.
(
1998
).
Sulfur reduction by human erythrocytes.
J. Exp. Zool
282
,
310
–.
Stetter
K. O.
,
Huber
R.
,
Bloechel
E.
,
Kurr
M.
,
Eden
R. D.
,
Fielder
M.
,
Cash
H.
,
Vance
I.
(
1993
).
Hyperthermophilic archaea are thriving in the deep North Sea and Alaskan oil reservoirs.
Nature
365
,
743
–.
Taylor
B. F.
,
Oremland
R. S.
(
1979
).
Depletion of adenosine triphosphate in Desulfovibrio by oxyanions of Group VI elements.
Curr. Microbiol
3
,
101
–.
van Gemerden
H.
(
1968
).
On the ATP generation by Chromatium in the dark.
Arch. Mikrobiol
64
,
118
–.
This content is only available via PDF.