The responses of female Tettigonia viridissima to simulated bat echolocation calls were examined during tethered flight. The insects responded with three distinct behaviours, which occurred at graded stimulus intensities. At low intensities (threshold 54 dB SPL), T. viridissima responded by steering away from the sound source (negative phonotaxis). At intensities approximately 10 dB higher, beating of the hindwing was interrupted, although the insect remained in the flight posture. A diving response (cessation of the wingbeat, closure of the forewings and alignment of the legs against the body) occurred with a threshold of 76 dB SPL. Considering these thresholds, we estimate that the diving response occurs at approximately the sound amplitude at which many aerial-hawking bats first receive echoes from the insect. The other behaviours probably occur before the bat detects the insect and should therefore be interpreted as early avoidance behaviours. The repertoire of startle responses in T. viridissima, with directional and non-directional components, is similar to those of crickets and moths, but quite different from those described for another bushcricket (Neoconocephalus ensiger), which shows only a non-directional response. This supports the conclusion that bat-evasive behaviours are not conserved within the Tettigoniidae, but instead are shaped by the ecological constraints of the insects.
Ultrasound avoidance behaviour in the bushcricket Tettigonia viridissima (Orthoptera: Tettigoniidae)
W. Schulze, J. Schul; Ultrasound avoidance behaviour in the bushcricket Tettigonia viridissima (Orthoptera: Tettigoniidae). J Exp Biol 15 February 2001; 204 (4): 733–740. doi: https://doi.org/10.1242/jeb.204.4.733
Download citation file:
Advertisement
Cited by
The Integrative Biology of the Heart

We are pleased to welcome submissions to be considered for our upcoming special issue: The Integrative Biology of the Heart, guest edited by William Joyce and Holly Shiels. This issue will consider the biology of the heart at all levels of organisation, across animal groups and scientific fields.
JEB@100: an interview with Monitoring Editor John Terblanche

John Terblanche reveals how he narrowly avoided becoming a sports scientist and why he thinks phenotypic plasticity is the big question currently facing comparative physiologists. Find out more about the series on our Interviews page.
Vision 2024: Building Bridges in Visual Ecology

Early-career researchers can apply for funded places at our Vision 2024: Building Bridges in Visual Ecology. The event is organised by Eleanor Caves, Sonke Johnsen and Lorain Schweikert and being held at Buxted park 10-13 June 2023. Deadline 1 December 2023.
Reconciling the variability in the biological response of marine invertebrates to climate change

Drawing on work in reef-building corals, Zoe Dellaert and Hollie Putnam provide historical context to some of the long-standing challenges in global change biology that constrain our capacity for eco-evolutionary forecasting, as well as considering unresolved questions and future research approaches. Read the full Centenary Review Article here.
Sipping takes no effort for hovering hawkmoths

Hovering takes the most effort so how much energy does sipping require when hawkmoths hover? Next to nothing, apparently. Alexandre Palaoro & colleagues have discovered that the insects’ proboscises are incredibly wettable, drawing nectar along the length with no effort, giving them a free drink on the wing.