The alkaline environment, pH approximately 11, in the anterior midgut lumen of mosquito larvae is essential for normal nutrition and development. The mechanism of alkalization is, however, unknown. Although evidence from immunohistochemistry, electron microscopy and electrophysiology suggests that a V-ATPase is present in the basal membranes of the epithelial cells, its physiological role in the alkalization process has not been demonstrated. To investigate a possible role of the V-ATPase in lumen alkalization, pH gradients emanating from the hemolymph side of the midgut in semi-intact mosquito larvae were measured using non-invasive, self-referencing, ion-selective microelectrodes (SERIS). Large H+ concentration gradients, with highest concentrations close to the basal membrane (outward [H+] gradients), were found in the anterior midgut, whereas much smaller gradients, with concentrations lowest close to this membrane (inward [H+] gradients), were found in the gastric caeca and posterior midgut. Similar region-specific pH gradients, with consistent anterior-to-posterior profiles, were observed in individuals of two Aedes species, Aedes aegypti from semi-tropical Florida and Aedes canadensis from north-temperate Massachusetts. The gradients remained in a steady state for up to 6 h, the maximum duration of the recordings. Bafilomycin A1 (10(−5), 10(−7)mol × l(−1)) on the hemolymph side greatly diminished the [H+] gradients in the anterior midgut but had no effect on the gradients in the gastric caecum and posterior midgut. These physiological data are consistent with the previous findings noted above. Together, they support the hypothesis that a basal, electrogenic H+ V-ATPase energizes luminal alkalization in the anterior midgut of larval mosquitoes.

REFERENCES

Azuma
M.
,
Harvey
W. R.
,
Wieczorek
H.
(
1995
).
Stoichiometry of K+/H+antiport helps to explain extracellular pH11 in a model epithelium.
FEBS Lett
361
,
153
–.
Berenbaum
M.
(
1980
).
Adaptive significance of midgut pH in larval Lepidoptera.
Am. Nat
115
,
138
–.
Beyenbach
K. W.
,
Pannabecker
T. L.
,
Nagel
W.
(
2000
).
Central role of the apical membrane H+-ATPase in electrogenesis and epithelial transport in Malpighian tubules.
J. Exp. Biol
203
,
1459
–.
Blakely
R. D.
,
De Felice
L. J.
,
Hartzell
H. C.
(
1994
).
Molecular physiology of norepinephrine and serotonin transporters.
J. Exp. Biol
196
,
263
–.
Breton
S.
,
Hammar
K.
,
Smith
P. J. S.
,
Brown
D.
(
1998
).
Proton secretion in the male reproductive tract: involvement of Clindependent HCO3 transport.
Am. J. Physiol
275
,
1134
–.
Brown
D.
,
Smith
P. J. S.
,
Breton
S.
(
1997
).
Role of V-ATPase rich cells in acidification of the male reproductive tract.
J. Exp. Biol
200
,
257
–.
Castagna
M.
,
Shayakul
C.
,
Trotti
D.
,
Sacchi
V. F.
,
Harvey
W. R.
,
Hediger
M. A.
(
1998
).
Cloning and characterization of a potassium-coupled amino acid transporter.
Proc. Natl. Acad. Sci. USA
95
,
5395
–.
Chao
A. C.
,
Moffett
D. F.
,
Koch
A. R.
(
1991
).
Cytoplasmic pH and goblet cavity pH in the posterior midgut of the tobacco hornworm (Manduca sexta).
J. Exp. Biol
155
,
503
–.
Clark
T. M.
,
Koch
A.
,
Moffett
D. F.
(
1999
).
The anterior and posterior stomach regions of larval Aedes aegypti midgut: regionalspecialization of ion transport and stimulation by 5-hydroxytryptamine.
J. Exp. Biol
202
,
247
–.
Clark
T. M.
,
Koch
A.
,
Moffet
D. F.
(
2000
).
The electrical properties of the anterior stomach of the larval mosquito (Aedes aegypti).
J. Exp. Biol
203
,
1093
–.
Dadd
R. H.
(
1975
).
Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes.
J. Insect Physiol
21
,
1847
–.
Dadd
R. H.
(
1976
).
Loss of midgut alkalinity in chilled or narcotized mosquito larvae.
Ann. Ent. Soc. Am
69
,
248
–.
Dow
J. A. T.
(
1984
).
Extremely high pH in biological systems; a model for carbonate transport.
Am. J. Physiol
246
,
633
–.
Dröse
S.
,
Altendorf
K.
(
1997
).
Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases.
J. Exp. Biol
200
,
1
–.
Edwards
H. A.
(
1982
).
Ion concentration and activity in the haemolymph of Aedes aegypti larvae.
J. Exp. Biol
101
,
143
–.
Edwards
H. A.
(
1982
).
Free amino acids as regulators of osmotic pressure in aquatic insect larvae.
J. Exp. Biol
101
,
153
–.
Eguchi
M.
,
Azuma
M.
,
Yamamoto
H.
,
Takeda
S.
(
1990
).
Genetically defined membrane-bound and soluble alkaline phosphatases of the silkworm: their discrete localization and properties.
Prog. Clin. Biol. Res
344
,
267
–.
Ehrenfeld
J.
,
Klein
U.
(
1997
).
The key role of the H+V-ATPase in acid—base balance and Na+transport processes in frog skin.
J. Exp. Biol
200
,
247
–.
Filippova
M.
,
Ross
L. S.
,
Gill
S. S.
(
1998
).
Cloning of the V-ATPase B subunit cDNA from Culex quinquefasciatus and expression of the B and C subunits in mosquitoes.
Insect Mol. Biol
7
,
223
–.
Harvey
W. R.
(
1992
).
Physiology of V-ATPases.
J. Exp. Biol
172
,
1
–.
Harvey
W. R.
,
Maddrell
S. H. P.
,
Telfer
W. H.
,
Wieczorek
H.
(
1998
).
H+V-ATPases energize animal plasma membranes for secretion and absorption of ions and fluids.
Am. Zool
38
,
426
–.
Kppers
J.
,
Bunse
I.
(
1996
).
A primary cation transport by V-type ATPase of low specificity.
J. Exp. Biol
199
,
1327
–.
Lepier
A.
,
Azuma
M.
,
Harvey
W. R.
,
Wieczorek
H.
(
1994
).
K+/H+antiport in the tobacco hornworm midgut: the K+-transporting component of the K+pump.
J. Exp. Biol
196
,
361
–.
Moffett
D. F.
,
Cummings
S. A.
(
1994
).
Transepithelial potential and alkalization in an in situ preparation of tobacco hornworm (Manduca sexta) midgut.
J. Exp. Biol
194
,
341
–.
Padan
E.
,
Schuldiner
S.
(
1993
).
Na+/H+antiporters, molecular devices that couple the Na+and H+circulation in cells.
J. Bioenerg. Biomembr
25
,
647
–.
Senior-White
R.
(
1926
).
Physical factors in mosquito ecology.
Bull. Ent. Res
16
,
187
–.
Smith
P. J. S.
,
Hammar
K.
,
Porterfield
D. M.
,
Sanger
R. H.
,
Trimarchi
J. R.
(
1999
).
A self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux.
Microsc. Res. Techn
46
,
398
–.
Smith
P. J. S.
,
Sanger
R. H.
,
Jaffe
L. F.
(
1994
).
The vibrating Ca2+electrode: A new technique for detecting plasma membrane regions of Ca2+influx and efflux.
Meth. Cell Biol
40
,
115
–.
Volkman
A.
,
Peters
W.
(
1989
).
Investigation on the midgutcaeca of mosquito larva. II. Functional aspects.
Tissue & Cell
21
,
253
–.
Wieczorek
H.
,
Gruber
G.
,
Harvey
W. R.
,
Huss
M.
,
Merzendorfer
H.
(
1999
).
The plasma membrane H+V-ATPase from tobacco hornworm midgut.
J. Bioenerg. Biomembr
31
,
67
–.
Wieczorek
H.
,
Putzenlechner
M.
,
Zeiske
W.
,
Klein
U.
(
1991
).
A vacuolar-type proton pump energizes K+/H+-antiport in a plasma membrane.
J. Biol. Chem
266
,
15340
–.
Wolfersberger
M. G.
(
2000
).
Amino acid transport in insects.
Annu. Rev. Ent
45
,
111
–.
Zhuang
Z.
,
Linser
P. J.
,
Harvey
W. R.
(
1999
).
Antibody to H+V-ATPase subunit E colocalizes with portasomes in alkaline larval midgut of a freshwater mosquito (Aedes aegypti L.).
J. Exp. Biol
202
,
2449
–.
This content is only available via PDF.