The rate of fluid expulsion, R(CVC), from the contractile vacuole complex (CVC) of Paramecium multimicronucleatum was estimated from the volume of the contractile vacuoles (CVs) immediately before the start of fluid discharge and from the time elapsing between discharges. The R(CVC) increased when the cell was exposed to a strongly hypotonic solution and decreased in a weakly hypotonic solution. When the cell was exposed to an isotonic or a hypertonic solution, R(CVC) fell to zero. The time constant, tau, used to describe the change in R(CVC) in response to a change in external osmolarity shortened after a short-term exposure to a strongly hypotonic solution and lengthened after a short-term exposure to a less hypotonic solution. A remarkable lengthening of tau occurred after a short-term exposure to isotonic or hypertonic solution. Under natural conditions, mechanisms for controlling R(CVC) are effective in maintaining the cytosolic osmolarity hypertonic within a narrow concentration range despite changes in the external osmolarity, which is normally hypotonic to the cytosol. Cells exposed to an isotonic or hypertonic solution resumed CV activity when left in the solution for 12 h. The cytosolic osmolarity was found to increase and to remain hypertonic to the external solution. This will permit cells to continue to acquire water. The increase in the cytosolic osmolarity occurred in a stepwise fashion, rather than linearly, as the external osmolarity increased. That is, the cytosolic osmolarity first remained more-or-less constant at an increased level until the external osmolarity exceeded this level. Thereupon, the cytosolic osmolarity increased to a new higher level in 12 h, so that the cytosol again became hypertonic to the external solution and the cells resumed CV activity. These results imply that the cell needs to maintain water segregation activity even after it has been exposed to an isotonic or hypertonic environment. This supports the idea that the CVC might be involved not only in the elimination of excess cytosolic water but also in the excretion of some metabolic waste substances.

REFERENCES

Boguslavsky
V.
,
Rebecchi
M.
,
Morris
A. J.
,
Jhon
D.-Y.
,
Rhee
S. G.
,
McLaughlin
S.
(
1994
).
Effect of monolayer surface pressure on the activities of phosphoinositide-specific phospholipase C-1,- 1 and-1.
Biochemistry
33
,
3032
–.
Burack
W. R.
,
Yuan
Q.
,
Biltonen
R. L.
(
1993
).
Role of lateral phase separation in the modulation of phospholipase A2activity.
Biochemistry
32
,
583
–.
Cronkite
D. L.
,
Neuman
J.
,
Walker
D.
,
Pierce
S. K.
(
1991
).
The response of contractile and non-contractile vacuoles of Paramecium calkinsi to widely varying salinities.
J. Protozool
38
,
565
–.
Cronkite
D. L.
,
Pierce
S. K.
(
1989
).
Free amino acids and cell volume regulation in the euryhaline ciliate Paramecium calkinsi.
J. Exp. Zool
251
,
275
–.
Dallai
R.
,
Luporini
P.
,
Salvatici
P.
(
1985
).
Plasma membrane specialization at the discharge site of the excretory poreless vacuole of the ciliate Euplotes raikovi.
Tissue & Cell
17
,
309
–.
Dick
D. A. T.
(
1959
).
Osmotic properties of living cells.
Int. Rev. Cytol
8
,
387
–.
Fok
A. K.
,
Aihara
M. S.
,
Ishida
M.
,
Nolta
K. V.
,
Steck
T. L.
,
Allen
R. D.
(
1995
).
The pegs on the decorated tubules of the contractile vacuole complex of Paramecium are proton pumps.
J. Cell Sci
108
,
3163
–.
Fok
A. K.
,
Allen
R. D.
(
1979
).
Axenic Paramecium caudatum. I. Mass culture and structure.
J. Protozool
26
,
463
–.
Fok
A. K.
,
Clarke
M.
,
Ma
L.
,
Allen
R. D.
(
1993
).
Vacuolar H+-ATPase of Dictyostelium discoideum. A monoclonal antibody study.
J. Cell Sci
106
,
1103
–.
Garay
R. C.
,
Nazaret
C.
,
Hannaert
P. A.
,
Cragoe
E. J.
Jr.
(
1988
).
Demonstration of a [K+,Cl]-cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,Cl]-cotransport system.
Molec. Pharmac
33
,
696
–.
Grainger
D. W.
,
Reichert
A.
,
Ringsdorf
H.
,
Salesse
C.
(
1990
).
Hydrolytic action of phospholipase A2in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy.
Biochim. Biophys. Acta
1023
,
365
–.
Hantz
E.
,
Cao
A.
,
Escaig
J.
,
Taillandier
E.
(
1986
).
The osmotic response of large unilamellar vesicles studied by quasielastic light scattering.
Biochim. Biophys. Acta
862
,
379
–.
Hausmann
K.
,
Allen
R. D.
(
1977
).
Membranes and microtubules of the excretory apparatus of Paramecium caudatum.
Eur. J. Cell Biol
15
,
303
–.
Heuser
J.
,
Zhu
Q.
,
Clarke
M.
(
1993
).
Proton pumps populate the contractile vacuoles of Dictyostelium amoebae.
J. Cell Biol
121
,
1311
–.
Hoffmann
E. K.
,
Simonson
L. O.
,
Lambert
I. H.
(
1984
).
Volume-induced increase of K+and Clpermeabilities in Ehrlich ascites tumor cells.
J. Membr. Biol
78
,
211
–.
Ishida
M.
,
Aihara
M. S.
,
Allen
R. D.
,
Fok
A. K.
(
1993
).
Osmoregulation in Paramecium: the locus of fluid segregation in the contractile vacuole complex.
J. Cell Sci
106
,
693
–.
Ishida
M.
,
Fok
A. K.
,
Aihara
M. S.
,
Allen
R. D.
(
1996
).
Hyperosmotic stress leads to reversible dissociation of the proton pump-bearing tubules from the contractile vacuole complex in Paramecium.
J. Cell Sci
109
,
229
–.
Jacobs
M. W.
(
1932
).
Osmotic properties of the erythrocyte. III.The applicability of osmotic laws to the rate of the hemolysis in hypotonic solutions of non-electrolytes.
Biol. Bull
62
,
178
–.
Kaneshiro
E. S.
,
Dunham
P. B.
,
Holz
G. G.
Jr.
(
1969
).
Osmoregulation in a marine ciliate, Miamiensis avidus. I. Regulation of inorganic ions and water.
Biol. Bull
136
,
63
–.
Kaneshiro
E. S.
,
Holz
G. G.
,
Dunham
P. B.
(
1969
).
Osmoregulation in a marine ciliate, Miamiensis avidus. II. Regulation of intracellular free amino acids.
Biol. Bull
137
,
161
–.
Lehtonen
J. Y. A.
,
Kinnunen
P. K. J.
(
1995
).
Phospholipase A2as a Mechanosensor.
Biophys. J
68
,
1888
–.
Lichtenberg
D.
,
Romero
G.
,
Menashe
M.
,
Biltonen
R. L.
(
1986
).
Hydrolysis of dipalmitoylphosphatidylcholine large unilamellar vesicles by porcine pancreatic phospholipase A2.
Biochemistry
26
,
5334
–.
Mitchell
H. J.
,
Hardham
A. R.
(
1999
).
Characterisation of water expulsion vacuole in Phytophthora nicotianae zoospores.
Protoplasma
206
,
118
–.
Naitoh
Y.
,
Tominaga
T.
,
Ishida
M.
,
Fok
A. K.
,
Aihara
M. S.
,
Allen
R. D.
(
1997
).
How does the contractile vacuole of Parameciummultimicronucleatum expel fluid? Modelling the expulsion mechanism.
J. Exp. Biol
200
,
713
–.
Nolta
K. V.
,
Padh
H.
,
Steck
T. L.
(
1993
).
An immunocytochemical analysis of the vacuolar proton pump in Dictyostelium discoideum.
J. Cell Sci
105
,
849
–.
Pal
R. A.
(
1972
).
The osmoregulatory system of the amoeba, Acanthamoeba castellanii.
J. Exp. Biol
57
,
55
–.
Patterson
D. J.
(
1980
).
Contractile vacuoles and associated structures: their organization and function.
Biol. Rev
55
,
1
–.
Patterson
D. J.
,
Sleigh
M. A.
(
1976
).
Behavior of the contractile vacuole of Tetrahymena pyriformis W: a redescription with comments on the terminology.
J. Protozool
23
,
410
–.
Prescott
D. M.
,
Zeuthen
E.
(
1953
).
Comparison of water diffusion and water filtration across cell surfaces.
Acta Physiol. Scand
28
,
77
–.
Sarkadi
B.
,
Mack
E.
,
Rothstein
A.
(
1984
).
Ionic events during the volume response of human peripheral blood lymphocytes to hypotonic media. I. Distinctions between volume activated Cland K+conductance pathways.
J. Gen. Physiol
83
,
497
–.
Sidel
V. W.
,
Solomon
A. K.
(
1957
).
Entrance of water into human red cells under an osmotic pressure gradient.
J. Gen. Physiol
41
,
243
–.
Souvignet
C.
,
Pelosin
J.-M.
,
Daniel
S.
,
Chambaz
E. M.
,
Ransac
S.
,
Verger
R.
(
1991
).
Activation of protein kinase C in lipid monolayers.
J. Biol. Chem
266
,
40
–.
Stock
C.
,
Allen
R. D.
,
Naitoh
Y.
(
2000
).
Stepwise increases in the cytosolic osmolarity and the free K+concentration in Paramecium multimicronucleatum: Implications for the cell's osmoregulation.
Mol. Biol. Cell
11
,
501
–.
Stoner
L. C.
,
Dunham
P. B.
(
1970
).
Regulation of cellular osmolarity and volume in Tetrahymena.
J. Exp. Biol
53
,
391
–.
Tani
T.
,
Allen
R. D.
,
Naitoh
Y.
(
2000
).
Periodic tension development in the membrane of the in vitro conctractile vacuole of Paramecium multimicronucleatum: modification by bisection, fusion and suction.
J. Exp. Biol
203
,
239
–.
Thompson
J. C.
,
Kaneshiro
E. S.
(
1968
).
Redescriptions of Uronema filificum and U. elegans.
J. Protozool
15
,
141
–.
Tominaga
T.
,
Allen
R. D.
,
Naitoh
Y.
(
1998
).
Cyclic changes in the tension of the contractile vacuole complex membrane control its exocytotic cycle.
J. Exp. Biol
201
,
2647
–.
Zeuthen
T.
(
1992
).
From contractile vacuole to leaky epithelia. Coupling between salt and water fluxes in biological membranes.
Biochim. Biophys. Acta
1113
,
229
–.
Zhu
Q.
,
Clarke
M.
(
1992
).
Association of calmodulin and an unconventional myosin with the contractile vacuole complex of Dictyostelium discoideum.
J. Cell Biol
118
,
347
–.
This content is only available via PDF.