Bile acids are steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. Individual bile acid carriers have now been cloned from several species. Na(+)-dependent transporters that mediate uptake into hepatocytes and reabsorption from the intestine and biliary epithelium and an ATP-dependent transporter that pumps bile acids into bile comprise the classes of transporter that are specific for bile acids. In addition, at least four human and five rat genes that code for Na(+)-independent organic anion carriers with broad multi-substrate specificities that include bile acids have been discovered. Studies concerning the regulation of these carriers have permitted identification of molecular signals that dictate eventual changes in the uptake or excretion of bile acids, which in turn have profound physiological implications. This overview summarizes and compares all known bile acid transporters and highlights findings that have identified diseases linked to molecular defects in these carriers. Recent advances that have fostered a more complete appreciation for the elaborate disposition of bile acids in humans are emphasized.
Transport of bile acids in hepatic and non-hepatic tissues
M.V. St-Pierre, G.A. Kullak-Ublick, B. Hagenbuch, P.J. Meier; Transport of bile acids in hepatic and non-hepatic tissues. J Exp Biol 15 May 2001; 204 (10): 1673–1686. doi: https://doi.org/10.1242/jeb.204.10.1673
Download citation file:
Advertisement
Cited by
In the field: an interview with Sönke Johnsen
(update2)-SonkeJohnsen.jpg?versionId=3990)
Sönke Johnsen is a Professor at Duke University, USA, investigating visual ecology and he talks about his experiences of collecting transparent animals while blue water diving and in a submersible, as well as outrunning Hurricane Katrina.
Call for new preLighters
(update)-CallForPreLighters.png?versionId=3990)
preLights is the preprint highlighting community supported by The Company of Biologists. At the heart of preLights are our preLighters: early-career researchers who select and write about interesting new preprints for the research community. We are currently looking for new preLighters to join our team. Find out more and apply here.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3990)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3990)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.