To understand better how complex interactions between environmental variables affect the energy balance of small diurnal animals, we studied the effects of the absence and presence of 950 W m(−)(2) simulated solar radiation combined with wind speeds ranging from 0. 25 to 1.00 m s(−)(1) on the metabolic rate and body temperature of the round-tailed ground squirrel Spermophilus tereticaudus. As wind speed increased from 0.25 to 1.00 m s(−)(1), metabolic heat production increased by 0.94 W in the absence of solar radiation and by 0.98 W in the presence of 950 W m(−)(2) simulated solar radiation. Exposure to simulated solar radiation reduced metabolic heat production by 0.68 W at a wind speed of 0.25 m s(−)(1), by 0.64 W at 0.50 m s(−)(1) and by 0.64 W at 1.00 m s(−)(1). Body temperature was significantly affected by environmental conditions, ranging from 32. 5 degrees C at a wind speed of 1.0 m s(−)(1) and no irradiance to 35. 6 degrees C at a wind speed of 0.50 m s(−)(1) with 950 W m(−)(2)short-wave irradiance. In addition, several unusual findings resulted from this study. The coat of S. tereticaudus is very sparse, and the observed heat transfer of 5.68+/−0.37 W m(−)(2) degrees C(−)(1) (mean +/− s.e.m., N=11) is much higher than expected from either allometric equations or comparative studies with other rodents of similar mass. Solar heat gain was remarkably low, equalling only 10 % of intercepted radiation and suggesting a remarkably high regional thermal resistance at the tissue level. Animals remained normally active and alert at body temperatures as low as 32.5 degrees C. These findings suggest a unique combination of adaptations that allow S. tereticaudus to exploit a harsh desert environment.
Effect of wind and solar radiation on metabolic heat production in a small desert rodent, Spermophilus tereticaudus
K.M. Wooden, G.E. Walsberg; Effect of wind and solar radiation on metabolic heat production in a small desert rodent, Spermophilus tereticaudus. J Exp Biol 1 March 2000; 203 (5): 879–888. doi: https://doi.org/10.1242/jeb.203.5.879
Download citation file:
Advertisement
Cited by
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4510)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4510)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.