The anatomical diffusing factors (ADFs), defined as the ratio of surface area to the thickness of the diffusion barrier, of possible respiratory surfaces of adult amphioxus (Branchiostoma lanceolatum) were evaluated using stereological methods. The ADF is greatest for the lining of the atrium and for the skin covering the segmental muscles. Calculation of the diffusing capacities for O(2) revealed that the lining of the atrium makes up nearly 83 % of the entire diffusing capacity (8.86 × 10(−3) microl min(−1)mg(−1)kPa(−1) while the skin over the segmental muscles (9%), the skin over the metapleural fold (4%) and the gill bars (4%) are of minor importance. The diffusing capacity of surfaces lying over coelomic cavities makes up 76% of the whole diffusing capacity, which is consistent with the hypothesis that the coelom may function as a circulatory system for respiratory gases. Muscles have approximately 23% of the entire diffusing capacity, indicating that they may be self-sufficient for O(2) uptake. The diffusing capacity of the blood vessels in the gill bars is only 1% of the total. Thus, the ‘gills’ lack significant function as respiratory organs in amphioxus (lancelets).

REFERENCES

Baddeley
A. J.
,
Gundersen
H. J.
,
Cruz-Orive
L. M.
(
1986
).
Estimation of surface area from vertical sections
.
J. Microsc
142
,
259
–.
Baskin
D. G.
,
Detmers
P. A.
(
1976
).
Electron microscopic study on the gill bars of amphioxus (Branchiostoma californiense) with special reference to neurociliary control
.
Cell Tissue Res
166
,
167
–.
Bishop
J. J.
,
Vandergon
T. L.
,
Green
D. B.
,
Doeller
J. E.
,
Kraus
D. W.
(
1998
).
A high-affinity hemoglobin is expressed in the notochord of amphioxus, Branchiostoma californiense
.
Biol. Bull
195
,
255
–.
Courtney
W. A. M.
,
Newell
R. C.
(
1965
).
Ciliary activity and oxygen uptake in Branchiostoma lanceolatum (Pallas)
.
J. Exp. Biol
43
,
1
–.
Gans
C.
(
1996
).
Study of the lancelets: The first 200 years
.
Isr. J. Zool
42
,
3
–.
Gundersen
H. J. G.
,
Jensen
E. B.
(
1987
).
The efficiency of systematic sampling in stereology and its prediction
.
J. Microsc
147
,
229
–.
Hill
B. J.
,
Potter
I. C.
(
1970
).
Oxygen consumption in ammocoetes of the lamprey Ichthyomyzon hubbsi Raney
.
J. Exp. Biol
53
,
47
–.
Holland
N. D.
,
Holland
L. Z.
(
1990
).
Fine structure of the mesothela and extracellular materials in the coelomic fluid of the fin boxes, myocoels and sclerocoels of a lancelet, Branchiostoma floridae (Cephalochordata=Acrania)
.
Acta Zool
71
,
225
–.
Holland
N. D.
,
Panganiban
G.
,
Henyey
E. L.
,
Holland
L. Z.
(
1996
).
Sequence and developmental expression of AmphiDII and amphioxus Distal-less gene transcribed in the ectoderm, epidermis and nervous system: insights into evolution of craniate forebrain and neural crest
.
Development
122
,
2911
–.
Michel
R. P.
,
Cruz-Orive
L. M.
(
1988
).
Application of the Cavalieri principle and vertical sections method to lung: estimation of volume and pleural surface area
.
J. Microsc
150
,
117
–.
Perry
S. F.
(
1978
).
Quantitative anatomy of the lungs of the red-eared turtle, Pseudemys scripta elegans
.
Respir. Physiol
35
,
245
–.
Rähr
H.
(
1979
).
The circulatory system of amphioxus (Branchiostoma lanceolatum (Pallas)). A light-microscopic investigation based on intravascular injection technique
.
Acta Zool
60
,
1
–.
Stach
T.
(
1998
).
Coelomic cavities may function as a vascular system in amphioxus larvae
.
Biol. Bull
195
,
260
–.
Stach
T.
,
Eisler
K.
(
1998
).
The ontogeny of the nephridial system of the larval amphioxus (Branchiostoma lanceolatum)
.
Acta Zool
79
,
113
–.
Weibel
E. R.
,
Knight
B. W.
(
1964
).
A morphometric study of the thickness of the pulmonary air—blood barrier
.
J. Cell Biol
21
,
367
–.
Wolf
H.
(
1941
).
Über die Beeinflussung der Kreislauftätigkeit bei Amphioxus lanceolatus
.
Pflugers Arch
244
,
736
–.
This content is only available via PDF.