In absolute terms, flight is a highly energetically expensive form of locomotion. However, with respect to its cost per unit distance covered, powered flight is a very efficient mode of transport. Birds and bats are the only extant vertebrate taxa that have achieved flight. Phylogenetically different, they independently accomplished this elite mode of locomotion by employing diverse adaptive schemes and strategies. Integration of functional and structural parameters, a transaction that resulted in certain trade-offs and compromises, was used to overcome exacting constraints. Unique morphological, physiological and biochemical properties were initiated and refined to enhance the uptake, transfer and utilization of oxygen for high aerobic capacities. In bats, exquisite pulmonary structural parameters were combined with optimal haematological ones: a thin blood-gas barrier, a large pulmonary capillary blood volume and a remarkably extensive alveolar surface area in certain species developed in a remarkably large lung. These factors were augmented by, for example, exceptionally high venous haematocrits and haemoglobin concentrations. In birds, a particularly large respiratory surface area and a remarkably thin blood-gas (tissue) barrier developed in a small, rigid lung; a highly efficient cross-current system was fabricated within the parabronchi. The development of flight in only four animal taxa (among all the animal groups that have ever evolved; i.e. insects, the now-extinct pterosaurs, birds and bats) provides evidence for the enormous biophysical and energetic constraints that have stymied volancy. Bats improved a fundamentally mammalian lung to procure the large amounts of oxygen needed for flight. The lung/air sac system of birds is not therefore a prescriptive morphology for flight: the essence of its design can be found in the evolution of the reptilian lung, the immediate progenitor stock from which birds arose. The attainment of flight is a classic paradigm of the remarkable adaptability inherent in organismal and organic biology for countering selective pressures by initiating elegant morphologies and physiologies.
What it takes to fly: the structural and functional respiratory refinements in birds and bats
J.N. Maina; What it takes to fly: the structural and functional respiratory refinements in birds and bats. J Exp Biol 15 October 2000; 203 (20): 3045–3064. doi: https://doi.org/10.1242/jeb.203.20.3045
Download citation file:
Advertisement
Cited by
So long Andy and welcome Monica
We say a fond farewell to Andy Biewener who, after 20 years and steering hundreds of manuscripts through peer review, will be stepping down from his role as JEB Editor. We are delighted to welcome Monica Daley to the team in his place.
Supporting early-career researchers
As a journal published by The Company of Biologists, we champion early-career researchers. Find out more about the practical solutions available to help this vital community navigate the first stages of their careers.
Neuroethology of number sense across the animal kingdom
Andreas Nieder considers the fundamentally different types of brains of diverse and distantly related animal species that give rise to number skills across the animal kingdom.
Hiking trails ideal for sauntering grizzlies
New measurements reveal that grizzly bears use similar amounts of energy as humans when walking and prefer to take routes with a gradient of less than 10%, which explains why they sometimes turn up on human hiking trails that are shallow for our use and are also ideal for grizzlies.
Upcoming grant deadlines
Grants awarded by The Company of Biologists help scientists travel, attend events and host sustainable activities. Make a note of the upcoming application deadlines and find out more about the grants on offer:
Sustainable Conferencing Grants
17 May 2021
Travelling Fellowships
31 May 2021
Scientific Meeting Grants
4 June 2021