It is difficult to distinguish the independent effects of gravity from those of inertia on a running animal. Simply adding mass proportionally changes both the weight (gravitational force) and mass (inertial force) of the animal. We measured ground reaction forces for eight male humans running normally at 3 m s(−)(1) and under three experimental treatments: added gravitational and inertial forces, added inertial forces and reduced gravitational forces. Subjects ran at 110, 120 and 130 % of normal weight and mass, at 110, 120 and 130 % of normal mass while maintaining 100 % normal weight, and at 25, 50 and 75 % of normal weight while maintaining 100 % normal mass. The peak active vertical forces generated changed with weight, but did not change with mass. Surprisingly, horizontal impulses changed substantially more with weight than with mass. Gravity exerted a greater influence than inertia on both vertical and horizontal forces generated against the ground during running. Subjects changed vertical and horizontal forces proportionately at corresponding times in the step cycle to maintain the orientation of the resultant vector despite a nearly threefold change in magnitude across treatments. Maintaining the orientation of the resultant vector during periods of high force generation aligns the vector with the leg to minimize muscle forces.

REFERENCES

Alexander
R. McN.
,
Jayes
A. S.
(
1980
).
Fourier analysis of forces exerted in walking and running
.
J. Biomech
13
,
383
–.
Biewener
A. A.
(
1989
).
Scaling body support in mammals: limb posture and muscle mechanics
.
Science
245
,
45
–.
Biewener
A. A.
(
1990
).
Biomechanics of mammalian terrestrial locomotion
.
Science
250
,
1097
–.
Cavagna
G. A.
,
Heglund
N. C.
,
Taylor
C. R.
(
1977
).
Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure
.
Am. J. Physiol
233
,
243
–.
Cavagna
G. A.
,
Willems
P. A.
,
Heglund
N. C.
(
1998
).
Walking on Mars
.
Nature
393
,
636
–.
Cavanagh
P. R.
,
Lafortune
M. A.
(
1980
).
Ground reaction forces in distance running
.
J. Biomech
13
,
397
–.
Chang
Y.-H.
,
Kram
R.
(
1999
).
Metabolic cost of generating horizontal forces in running
.
J. Appl. Physiol
86
,
1657
–.
Davis
B. L.
,
Cavanagh
P. R.
(
1993
).
Simulating reduced gravity: a review of biomechanical issues pertaining to human locomotion
.
Aviat. Space Env. Med
64
,
557
–.
Farley
C. T.
,
McMahon
T. A.
(
1992
).
Energetics of walking and running: insights from simulated reduced-gravity experiments
.
J. Appl. Physiol
73
,
2709
–.
Farley
C. T.
,
Taylor
C. R.
(
1991
).
A mechanical trigger for the trot—gallop transition in horses
.
Science
253
,
306
–.
Fenn
W. O.
(
1930
).
Work against gravity and work due to velocity changes in running
.
Am. J. Physiol
93
,
433
–.
Full
R. J.
,
Blickhan
R.
,
Ting
L. H.
(
1991
).
Leg design in hexapedal runners
.
J. Exp. Biol
158
,
369
–.
Greene
P. R.
(
1987
).
Sprinting with banked turns
.
J. Biomech
20
,
667
–.
He
J. P.
,
Kram
R.
,
McMahon
T. A.
(
1991
).
Mechanics of running under simulated low gravity
.
J. Appl. Physiol
71
,
863
–.
Herreid
C. L.
,
Full
R. J.
(
1986
).
Energetics of hermit crabs during locomotion: the cost of carrying a shell
.
J. Exp. Biol
120
,
297
–.
Kram
R.
,
Domingo
A.
,
Ferris
D. P.
(
1997
).
Effect of reduced gravity on the preferred walk—run transition speed
.
J. Exp. Biol
200
,
821
–.
Kram
R.
,
Griffin
T. M.
,
Donelan
J. M.
,
Chang
Y. H.
(
1998
).
A force-treadmill for measuring vertical and horizontal ground reaction forces
.
J. Appl. Physiol
85
,
764
–.
Kram
R.
,
Taylor
C. R.
(
1990
).
Energetics of running: a new perspective
.
Nature
346
,
265
–.
Margaria
R.
,
Cavagna
G. A.
(
1964
).
Human locomotion in subgravity
.
Aerospace Med
35
,
1140
–.
Martinez
M. M.
,
Full
R. J.
,
Koehl
M. A. R.
(
1998
).
Underwater punting by an intertidal crab: a novel gait revealed by the kinematics of pedestrian locomotion in air versus water
.
J. Exp. Biol
201
,
2609
–.
McMahon
T. A.
,
Valiant
G.
,
Frederick
E. C.
(
1987
).
Groucho running
.
J. Appl. Physiol
62
,
2326
–.
Munro
C. F.
,
Miller
D. I.
,
Fuglevand
A. J.
(
1987
).
Ground reaction forces in running: a reexamination
.
J. Biomech
20
,
147
–.
Newman
D. J.
,
Alexander
H. L.
,
Webbon
B. W.
(
1994
).
Energetics and mechanics for partial gravity locomotion
.
Aviat. Space Env. Med
65
,
815
–.
Nilsson
J.
,
Thorstensson
A.
(
1989
).
Ground reaction forces at different speeds of human walking and running
.
Acta Physiol. Scand
136
,
217
–.
Taylor
C. R.
,
Heglund
N. C.
,
McMahon
T. A.
,
Looney
T. R.
(
1980
).
Energetic cost of generating muscular force during running: a comparison of small and large animals
.
J. Exp. Biol
86
,
9
–.
This content is only available via PDF.