Detailed morphological investigation, mechanical testing and high-speed cinematography and stroboscopic examination of desert locusts, Schistocerca gregaria, in flight show that their hind wings are adapted to deform cyclically and automatically through the wing stroke and that the deformations are subtly dependent on the wings' structure: their shape, venation and vein design and the local properties of the membrane. The insects predominantly fly fast forwards, generating most force on the downstroke, and the hind wings generate extra lift by peeling apart at the beginning of the downstroke and by developing a cambered section during the stroke's translation phase through the ‘umbrella effect’ - an automatic consequence of the active extension of the wings' expanded posterior fan. Bending experiments indicate that most of the hind wing is more rigid to forces from below than from above and demonstrate that the membrane acts as a stressed skin to stiffen the structure.

Cloupeau
M.
,
Devillers
J. F.
,
Devezeaux
D.
(
1979
).
Direct measurements of instantaneous lift in desert locust: comparison with Jensen's experiments on detached wings
.
J. Exp. Biol
80
,
1
–.
Ellington
C. P.
(
1984
).
The aerodynamics of hovering insect flight. III.Kinematics
.
Phil. Trans. R. Soc. Lond. B
305
,
41
–.
Ellington
C. P.
(
1984
).
The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms
.
Phil. Trans. R. Soc. Lond. B
305
,
79
–.
Herbert
R.
,
Young
P. G.
,
Smith
C. W.
,
Wootton
R. J.
,
Evans
K. E.
(
2000
).
The hind wing of the desert locust (Schistocerca gregaria Forskål). III. A finite element analysis of a deployable structure
.
J. Exp. Biol
203
,
2945
–.
Jensen
M.
(
1956
).
Biology and physics of locust flight. III. The aerodynamics of locust flight
.
Phil. Trans. R. Soc. Lond. B
239
,
511
–.
Jensen
M.
,
Weis-Fogh
T.
(
1962
).
Biology and physics of locust flight. V. Strength and elasticity of locust cuticle
.
Phil. Trans. R. Soc. Lond. B
245
,
137
–.
Newman
D. J. S.
,
Wootton
R. J.
(
1986
).
An approach to the mechanics of pleating in dragonfly wings
.
J. Exp. Biol
125
,
361
–.
Smith
C. W.
,
Herbert
R.
,
Wootton
R. J.
,
Evans
K. E.
(
2000
).
The hind wing of the desert locust (Schistocerca greagria Forskål). II. Mechanical properties and functioning of the membrane
.
J. Exp. Biol
203
,
2933
–.
Sunada
S.
,
Kawachi
K.
,
Watanabe
I.
,
Azuma
A.
(
1993
).
Fundamental analysis of three-dimensional ‘near fling’
.
J. Exp. Biol
183
,
217
–.
Weis-Fogh
T.
(
1956
).
Biology and physics of locust flight. II. Flight performance of the desert locust
.
Phil. Trans. R. Soc. Lond. B
239
,
459
–.
Weis-Fogh
T.
(
1956
).
Biology and physics of locust flight. IV. Notes on sensory mechanisms in locust flight.
Phil. Trans. R. Soc. Lond. B
239
,
459
510.
Weis-Fogh
T.
(
1964
).
Biology and physics of locust flight. VIII. Lift and metabolic rate of flying insects
.
J. Exp. Biol
41
,
257
–.
Weis-Fogh
T.
(
1973
).
Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production
.
J. Exp. Biol
59
,
169
–.
Weis-Fogh
T.
,
Jensen
M.
(
1956
).
Biology and physics of locust flight. I. Basic principles in insect flight
.
A critical review. Phil. Trans. R. Soc. Lond. B
239
,
415
–.
Wootton
R. J.
(
1992
).
Functional morphology of insect wings
.
Annu. Rev. Ent
37
,
113
–.
Wootton
R. J.
(
1993
).
Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta, Papilionoidea)
.
J. Exp. Biol
180
,
105
–.
Wootton
R. J.
(
1995
).
Geometry and mechanics of insect hindwing fans: a modelling approach
.
Proc. R. Soc. Lond. B
262
,
181
–.
Zarnack
W.
(
1972
).
Flugbiophysik der Wanderheuschrecke (Locusta migratoria L.). I. Die Bewegungen der Vorderflugel
.
J. Comp. Physiol
78
,
356
–.
This content is only available via PDF.