High-speed, high-resolution digital video recordings of swimming squid (Loligo pealei) were acquired. These recordings were used to determine very accurate swimming kinematics, body deformations and mantle cavity volume. The time-varying squid profile was digitized automatically from the acquired swimming sequences. Mantle cavity volume flow rates were determined under the assumption of axisymmetry and the condition of incompressibility. The data were then used to calculate jet velocity, jet thrust and intramantle pressure, including unsteady effects. Because of the accurate measurements of volume flow rate, the standard use of estimated discharge coefficients was avoided. Equations for jet and whole-cycle propulsive efficiency were developed, including a general equation incorporating unsteady effects. Squid were observed to eject up to 94 % of their intramantle working fluid at relatively high swimming speeds. As a result, the standard use of the so-called large-reservoir approximation in the determination of intramantle pressure by the Bernoulli equation leads to significant errors in calculating intramantle pressure from jet velocity and vice versa. The failure of this approximation in squid locomotion also implies that pressure variation throughout the mantle cannot be ignored. In addition, the unsteady terms of the Bernoulli equation and the momentum equation proved to be significant to the determination of intramantle pressure and jet thrust. Equations of propulsive efficiency derived for squid did not resemble Froude efficiency. Instead, they resembled the equation of rocket motor propulsive efficiency. The Froude equation was found to underestimate the propulsive efficiency of the jet period of the squid locomotory cycle and to overestimate whole-cycle propulsive efficiency when compared with efficiencies calculated from equations derived with the squid locomotory apparatus in mind. The equations for squid propulsive efficiency reveal that the refill period of squid plays a greater role, and the jet period a lesser role, in the low whole-cycle efficiencies predicted in squid and similar jet-propelled organisms. These findings offer new perspectives on locomotory hydrodynamics, intramantle pressure measurements and functional morphology with regard to squid and other jet-propelled organisms.
The mechanics of locomotion in the squid Loligo pealei: locomotory function and unsteady hydrodynamics of the jet and intramantle pressure
E.J. Anderson, M.E. DeMont; The mechanics of locomotion in the squid Loligo pealei: locomotory function and unsteady hydrodynamics of the jet and intramantle pressure. J Exp Biol 15 September 2000; 203 (18): 2851–2863. doi: https://doi.org/10.1242/jeb.203.18.2851
Download citation file:
Advertisement
Cited by
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4616)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.