The importance of respiratory patterns and the physical properties of cuticular lipids to insect water balance were investigated in natural populations of the grasshopper Melanoplus sanguinipes. I specifically test the hypotheses that patterns of discontinuous ventilation affect water loss and that increased amounts and melting points of cuticular lipid reduce water loss. Using flow-through respirometry, rates of water loss and carbon dioxide release from grasshoppers were quantified at 25, 35 and 42 degrees C. Populations displayed substantial variation, with high-elevation populations exhibiting the greatest water loss and metabolic rates. Behavior leading to discontinuous gas exchange was observed in several populations, but its occurrence decreased dramatically at high temperatures and was not correlated with a reduction in the rate of water loss. The amount and melting point of cuticular lipids were determined for each individual using gas chromatography and Fourier-transform infrared spectroscopy. Increased amounts and higher melting points of cuticular lipids were strongly correlated with lower rates of water loss in populations. I show that discontinuous gas exchange is unlikely to be a mechanism for reducing water loss in these insects and that the lipid properties are primarily responsible for variation in overall water loss rates.

REFERENCES

Blomquist
G. J.
,
Nelson
D. R.
,
de Renobales
M.
(
1987
).
Chemistry, biochemistry and physiology of insect cuticular lipids
.
Arch. Insect Biochem. Physiol
6
,
227
–.
Buck
J.
(
1962
).
Some physical aspects of insect respiration
.
Annu. Rev. Ent
7
,
27
–.
Cobb
M.
,
Jallon
J.-M.
(
1990
).
Pheromones, mate recognition and courtship stimulation in the Drosophila melanogaster species sub-group
.
Anim. Behav
39
,
1058
–.
Gibbs
A. G.
(
1995
).
Physical properties of insect cuticular hydrocarbons: model mixtures and lipid interactions
.
Comp. Biochem. Physiol
112
,
667
–.
Gibbs
A.
,
Crowe
J. H.
(
1991
).
Intra-individual variation in cuticular lipids studied using Fourier transform infrared spectroscopy
.
J. Insect Physiol
37
,
743
–.
Gibbs
A. G.
,
Louie
A. K.
,
Ayala
J. A.
(
1998
).
Effects of temperature on cuticular lipids and water balance in a desert Drosophila: is thermal acclimation beneficial?
.
J. Exp. Biol
201
,
71
–.
Gibbs
A. G.
,
Louie
A. K.
,
Kuenzli
M.
,
Blomquist
G. C.
(
1995
).
Sex-and age-related changes in the biophysical properties of cuticular lipids of the housefly, Musca domestica
.
Arch. Insect Biochem. Physiol
29
,
87
–.
Gibbs
A.
,
Mousseau
T. A.
,
Crowe
J. H.
(
1991
).
Genetic andB. C. ROURKEAverage air temperature (C)810121416182022Population metabolic rate (ml CO2 h-1 g-1)0.060.070.080.090.100.110.120.13Fig.11. Metabolic rates for five populations corrected for average July air temperature. The air temperatures are from data loggers placed at the sites during 1997, and the same Q10was used for each population. Some error is introduced because the measured Q10fromtwo sample populations varied somewhat depending on thetemperature range used. High-elevation populations, while possessing higher mass-specific metabolic rates, do not appear to be compensating completely for the lower ambient temperatures. Values are means ±S.E.M. (N =116).2711 Grasshopper water balance and metabolic rate acclimatory variation in biophysical properties of insect cuticle lipids
.
Proc. Natl. Acad. Sci. USA
88
,
7257
–.
Gibbs
A.
,
Pomonis
J. G.
(
1995
).
Physical properties of insect cuticular hydrocarbons: the effects of chain length, methyl-branching and unsaturation
.
Comp. Biochem. Physiol
112
,
243
–.
Hadley
N. F.
(
1978
).
Cuticular permeability of desert tenebrionid beetles: correlations with epicuticular hydrocarbon composition
.
Insect Biochem
7
,
277
–.
Hadley
N. F.
(
1981
).
Cuticular lipids of terrestrial plants and arthropods: A comparison of their structure, composition and waterproofing function
.
Biol. Rev
56
,
23
–.
Hadley
N. F.
,
Quinlan
M. C.
(
1993
).
Discontinuous carbon dioxide release in the eastern lubber grasshopper Romalea guttata and its effect on respiratory transpiration
.
J. Exp. Biol
177
,
169
–.
Harrison
J. F.
,
Hadley
N. F.
,
Quinlan
M. C.
(
1995
).
Acid—base status and spiracular control during discontinuous ventilation in grasshoppers
.
J. Exp. Biol
198
,
1755
–.
Lees
A. D.
(
1947
).
Transpiration and the structure of the epicuticle in ticks
.
J. Exp. Biol
23
,
379
–.
Levy
R. I.
,
Schneidermann
J. A.
(
1966
).
Discontinuous respiration in insects. IV. Changes in intratracheal pressure during the respiratory cycle of silkworm pupae
.
J. Insect Physiol
12
,
465
–.
Lighton
J. R. B.
(
1998
).
Notes from underground: Towards ultimate hypotheses of cyclic, discontinuous gas-exchange in tracheate arthropods
.
Am. Zool
38
,
483
–.
Lighton
J. R. B.
,
Berrigan
D.
(
1995
).
Questioning paradigms: caste-specific ventilation in harvester ants, Messor pergandei and M. julianus (Hymenoptera: Formicidae)
.
J. Exp. Biol
198
,
521
–.
Lighton
J. R. B.
,
Fukushi
T.
,
Wehner
R.
(
1993
).
Ventilation in Cataglyphis bicolor: regulation of carbon dioxide release from the thoracic and abdominal spiracles
.
J. Insect Physiol
39
,
687
–.
Lighton
J. R. B.
,
Garrigan
D.
(
1995
).
Ant breathing: testingregulation and mechanism hypotheses with hypoxia
.
J. Exp. Biol
198
,
1613
–.
Lighton
J. R. B.
,
Garrigan
D. A.
,
Duncan
F. D.
,
Johnson
R. A.
(
1993
).
Spiracular control of respiratory water loss in female alates of the harvester ant Pogonomyrmex rugosus
.
J. Exp. Biol
179
,
233
–.
Lockey
K. H.
(
1985
).
Insect cuticular lipids
.
Comp. Biochem. Physiol
81
,
263
–.
Lockey
K. H.
(
1988
).
Lipids of the insect cuticle: origin, composition and function
.
Comp. Biochem. Physiol
89
,
595
–.
Loveridge
J. P.
(
1968
).
The control of water loss in Locusta migratoria migratorioides R. & F. I. Cuticular water loss
.
J. Exp. Biol
49
,
1
–.
Massion
D. D.
(
1983
).
An altitudinal comparison of water and metabolic relations in two acridid grasshoppers (Orthoptera)
.
Comp. Biochem. Physiol
74
,
101
–.
Noble-Nesbitt
J.
,
Appel
A. G.
,
Croghan
P. C.
(
1995
).
Water and carbon dioxide loss from the cockroach Periplaneta americana (L.) measured using radioactive isotopes
.
J. Exp. Biol
198
,
235
–.
Prange
H. D.
(
1996
).
Evaporative cooling in insects
.
J. Insect Physiol
42
,
493
–.
Ramsay
J. A.
(
1935
).
The evaporation of water from the cockroach
.
J. Exp. Biol
12
,
373
–.
Rourke
B. C.
,
Gibbs
A. G.
(
1999
).
Effects of lipid phase transitions on cuticular permeability: model membrane and in situ studies
.
J. Exp. Biol
202
,
3255
–.
Toolson
E. C.
(
1982
).
Effects of rearing temperature on cuticle permeability and epicuticular lipid composition in Drosophila pseudoobscura
.
J. Exp. Zool
222
,
249
–.
Toolson
E. C.
,
Hadley
N. F.
(
1979
).
Seasonal effects on cuticular permeability and epicuticular lipid composition in Centruoides scupturatus Ewing 1928 (Scorpiones: Buthidae)
.
J. Comp. Physiol
129
,
319
–.
Toolson
E. C.
,
Kuper-Simbron
R.
(
1989
).
Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: Effects on sexual dimorphism and thermal-acclimation ability
.
Evolution
43
,
468
–.
Whitman
D. W.
(
1987
).
Thermoregulation and daily activity2712patterns in a black desert grasshopper, Taeniopoda eques
.
Anim. Behav
35
,
1814
–.
Wigglesworth
V. B.
(
1945
).
Transpiration through the cuticle of insects
.
J. Exp. Biol
21
,
97
–.
Williams
A. E.
,
Bradley
T. J.
(
1998
).
The effect of respiratory pattern on water loss in desiccation-resistant Drosophila melanogaster
.
J. Exp. Biol
201
,
2953
–.
Williams
A. E.
,
Bradley
T. J.
,
Rose
M. R.
(
1997
).
CO2release patterns in Drosophila melanogaster: the effect of selection for desiccation resistance
.
J. Exp. Biol
200
,
615
–.
Williams
A. E.
,
Rose
M. R.
,
Bradley
T. J.
(
1998
).
Using laboratory selection for desiccation resistance to examine the relationship between respiratory pattern and water loss in insects
.
J. Exp. Biol
201
,
2945
–.
This content is only available via PDF.