Snakes are excellent subjects for studying functional versatility and potential constraints because their movements are constrained to vertebral bending and twisting. In many snakes, swallowing is a kind of inside-out locomotion. During swallowing, vertebral bends push food from the jaws along a substantial length of the body to the stomach. In gopher snakes (Pituophis melanoleucus) and king snakes (Lampropeltis getula), swallowing often begins with lateral bending of the head and neck as the jaws advance unilaterally over the prey. Axial movement then shifts to accordion-like, concertina bending as the prey enters the oesophagus. Once the prey is completely engulfed, concertina bending shifts to undulatory bending that pushes the prey to the stomach. The shift from concertina to undulatory bending reflects a shift from pulling the prey into the throat (or advancing the mouth over the prey) to pushing it along the oesophagus towards the stomach. Undulatory kinematics and muscular activity patterns are similar in swallowing and undulatory locomotion. However, the distinct mechanical demands of internal versus external force exertion result in different duty factors of muscle activity. Feeding and locomotor movements are thus integral functions of the snake axial system.
The mechanics of swallowing and the muscular control of diverse behaviours in gopher snakes
B.R. Moon; The mechanics of swallowing and the muscular control of diverse behaviours in gopher snakes. J Exp Biol 1 September 2000; 203 (17): 2589–2601. doi: https://doi.org/10.1242/jeb.203.17.2589
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3942)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3942)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.