The Froude number (a ratio of inertial to gravitational forces) predicts the occurrence of dynamic similarity in legged animals over a wide range of sizes and velocities for both walking and running gaits at Earth gravity. This is puzzling because the Froude number ignores elastic forces that are crucial for understanding running gaits. We used simulated reduced gravity as a tool for exploring dynamic similarity in human running. We simulated reduced gravity by applying a nearly constant upward force to the torsos of our subjects while they ran on a treadmill. We found that at equal Froude numbers, achieved through different combinations of velocity and levels of gravity, our subjects did not run in a dynamically similar manner. Thus, the inertial and gravitational forces that comprise the Froude number were not sufficient to characterize running in reduced gravity. Further, two dimensionless numbers that incorporate elastic forces, the Groucho number and the vertical Strouhal number, also failed to predict dynamic similarity in reduced-gravity running. To better understand the separate effects of velocity and gravity, we also studied running mechanics at fixed absolute velocities under different levels of gravity. The effects of velocity and gravity on the requirements of dynamic similarity differed in both magnitude and direction, indicating that there are no two velocity and gravity combinations at which humans will prefer to run in a dynamically similar manner. A comparison of walking and running results demonstrated that reduced gravity had different effects on the mechanics of each gait. This suggests that a single unifying hypothesis for the effects of size, velocity and gravity on both walking and running gaits will not be successful.

REFERENCES

Alexander
R. McN
(
1989
).
Optimization and gaits in the locomotion of vertebrates
.
Physiol. Rev
69
,
1199
–.
Alexander
R. McN
(
1991
).
How dinosaurs ran.
Scient. Am.
264
,
130
136.
Alexander
R. McN.
,
Jayes
A. S.
(
1980
).
Fourier analysis of forces exerted in walking and running
.
J. Biomech
13
,
383
–.
Blickhan
R.
(
1989
).
The spring-mass model for running and hopping
.
J. Biomech
22
,
1217
–.
Cavagna
G. A.
(
1975
).
Force platforms as ergometers
.
J. Appl. Physiol
39
,
174
–.
Cavagna
G. A.
,
Heglund
N. C.
,
Taylor
C. R.
(
1977
).
Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure
.
Am. J. Physiol
233
,
243
–.
Cavanagh
P. R.
,
Kram
R.
(
1989
).
Stride length in distance running: velocity, body dimensions and added mass effects
.
Med. Sci. Sports Exerc
21
,
467
–.
Davis
B. L.
,
Cavanagh
P. R.
(
1993
).
Simulating reduced gravity: a review of biomechanical issues pertaining to human locomotion
.
Aviat. Space Env. Med
64
,
557
–.
Davis
B. L.
,
Cavanagh
P. R.
,
Sommer
H. J.
(
1996
).
Ground reaction forces during locomotion in simulated microgravity
.
Aviat. Space Env. Med
67
,
235
–.
Donelan
J. M.
,
Kram
R.
(
1997
).
The effect of reduced gravity on the kinematics of human walking: a test of the dynamic similarity hypothesis for locomotion
.
J. Exp. Biol
200
,
3193
–.
Donelan
J. M.
,
Letson
B. G.
,
Kram
R.
(
1997
).
Effect of reduced gravity on running kinematics
.
Med. Sci. Sports Exerc
29
,
81
–.
Farley
C. T.
,
Ferris
D. P.
(
1998
).
Biomechanics of walking and running: from center of mass movement to muscle action
.
Exerc. Sport Sci. Rev
26
,
253
–.
Farley
C. T.
,
Glasheen
J.
,
McMahon
T. A.
(
1993
).
Running springs: speed and animal size
.
J. Exp. Biol
185
,
71
–.
Farley
C. T.
,
Gonzalez
O.
(
1996
).
Leg stiffness and stride frequency in human running
.
J. Biomech
29
,
181
–.
Farley
C. T.
,
Houdijk
H. H.
,
Van Strien
C.
,
Louie
M.
(
1998
).
Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses
.
J. Appl. Physiol
85
,
1044
–.
Farley
C. T.
,
McMahon
T. A.
(
1992
).
Energetics of walking and running: insights from simulated reduced-gravity experiments
.
J. Appl. Physiol
73
,
2709
–.
Ferris
D. P.
,
Louie
M.
,
Farley
C. T.
(
1998
).
Running in the real world: adjusting leg stiffness for different surfaces
.
Proc. R. Soc. Lond. B
265
,
989
–.
Full
R. J.
,
Tu
M. S.
(
1990
).
Mechanics of six-legged runners
.
J. Exp. Biol
148
,
129
–.
Griffin
T. M.
,
Tolani
N. A.
,
Kram
R.
(
1999
).
Walking in simulated reduced gravity: mechanical energy fluctuations and exchange
.
J. Appl. Physiol
86
,
383
–.
He
J. P.
,
Kram
R.
,
McMahon
T. A.
(
1991
).
Mechanics of running under simulated low gravity
.
J. Appl. Physiol
71
,
863
–.
Kram
R.
,
Domingo
A.
,
Ferris
D. P.
(
1997
).
Effect of reduced gravity on the preferred walk—run transition speed
.
J. Exp. Biol
200
,
821
–.
Kram
R.
,
Griffin
T. M.
,
Donelan
J. M.
,
Chang
Y. H.
(
1998
).
A force-treadmill for measuring vertical and horizontal ground reaction forces
.
J. Appl. Physiol
85
,
764
–.
Lee
C. R.
,
Farley
C. T.
(
1998
).
Determinants of the center of mass trajectory in human walking and running
.
J. Exp. Biol
201
,
2935
–.
McMahon
T.
(
1973
).
Size and shape in biology
.
Science
179
,
1201
–.
McMahon
T. A.
(
1975
).
Using body size to understand the structural design of animals: quadrupedal locomotion
.
J. Appl. Physiol
39
,
619
–.
McMahon
T. A.
,
Cheng
G. C.
(
1990
).
The mechanics of running: how does stiffness couple with speed?
.
J. Biomech
23
,
1
–.
McMahon
T. A.
,
Valiant
G.
,
Frederick
E. C.
(
1987
).
Groucho running
.
J. Appl. Physiol
62
,
2326
–.
Minetti
A. E.
,
Saibene
F.
,
Ardigo
L. P.
,
Atchou
G.
,
Schena
F.
,
Ferretti
G.
(
1994
).
Pygmy locomotion
.
Eur. J. Appl. Physiol
68
,
285
–.
Newman
D. J.
,
Alexander
H. L.
,
Webbon
B. W.
(
1994
).
Energetics and mechanics for partial gravity locomotion
.
Aviat. Space Env. Med
65
,
815
–.
van Ingen Schenau
G. J.
,
Cavanagh
P. R.
(
1990
).
Power equations in endurance sports
.
J. Biomech
23
,
865
–.
Wagenaar
R. C.
,
Beek
W. J.
(
1992
).
Hemiplegic gait: a kinematic analysis using walking speed as a basis
.
J. Biomech
25
,
1007
–.
Williams
K. R.
(
1985
).
The relationship between mechanical and physiological energy estimates
.
Med. Sci. Sports Exerc
17
,
317
–.
This content is only available via PDF.