Phosphagen kinases catalyze the reversible dephosphorylation of guanidino phosphagens such as phosphocreatine and phosphoarginine, contributing to the restoration of adenosine triphosphate concentrations in cells experiencing high and variable demands on their reserves of high-energy phosphates. The major invertebrate phosphagen kinase, arginine kinase, is expressed in the gills of two species of euryhaline crabs, the blue crab Callinectes sapidus and the shore crab Carcinus maenas, in which energy-requiring functions include monovalent ion transport, acid-base balance, nitrogen excretion and gas exchange. The enzymatic activity of arginine kinase approximately doubles in the ion-transporting gills of C. sapidus, a strong osmoregulator, when the crabs are transferred from high to low salinity, but does not change in C. maenas, a more modest osmoregulator. Amplification and sequencing of arginine kinase cDNA from both species, accomplished by reverse transcription of gill mRNA and the polymerase chain reaction, revealed an open reading frame coding for a 357-amino-acid protein. The predicted amino acid sequences showed a minimum of 75 % identity with arginine kinase sequences of other arthropods. Ten of the 11 amino acid residues believed to participate in arginine binding are completely conserved among the arthropod sequences analyzed. An estimation of arginine kinase mRNA abundance indicated that acclimation salinity has no effect on arginine kinase gene transcription. Thus, the observed enhancement of enzyme activity in C. sapidus probably results from altered translation rates or direct activation of pre-existing enzyme protein.

REFERENCES

Bairoch
A.
(
1991
).
PROSITE: a dictionary of sites and patterns in proteins
.
Nucleic Acids Res
19
,
2241
–.
Bessman
S. P.
,
Carpenter
C. L.
(
1985
).
The creatine—creatine phosphate energy shuttle
.
Annu. Rev. Biochem
54
,
831
–.
Bradford
M. M.
(
1976
).
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein—dye binding
.
Analyt. Biochem
72
,
248
–.
Briggs
R. W.
,
Radda
G. K.
,
Thulborn
K. R.
(
1985
).
31P-NMR saturation transfer study of the in vivo kinetics of arginine kinase in Carcinus crab leg muscle
.
Biochim. Biophys. Acta
845
,
343
–.
Burnett
L. E.
,
Towle
D. W.
(
1990
).
Sodium ion uptake by perfused gills of the blue crab Callinectes sapidus: effects of ouabain and amiloride
.
J. Exp. Biol
149
,
293
–.
Chamberlin
M.
(
1997
).
Mitochondrial arginine kinase in the midgut of the tobacco hornworm (Manduca sexta)
.
J. Exp. Biol
200
,
2789
–.
Chen
C. H.
,
Lehninger
A. L.
(
1973
).
Respiration and phosphorylation by mitochondria from the hepatopancreas of the blue crab (Callinectessapidus)
.
Arch. Biochem. Biophys
154
,
449
–.
Chomczynski
P.
,
Sacchi
N.
(
1987
).
Single-step method of RNA isolation by acid guanidinium thiocyanate—phenol—chloroform extraction
.
Analyt. Biochem
162
,
156
–.
Dumas
C.
,
Camonis
J.
(
1993
).
Cloning and sequence analysis2404of the the cDNA for arginine kinase of lobster muscle
.
J. Biol. Chem
268
,
21599
–.
Ellington
W. R.
(
1989
).
Phosphocreatine represents a thermodynamic and functional improvement over other muscle phosphagens
.
J. Exp. Biol
143
,
177
–.
Ellington
W. R.
,
Hines
A. C.
(
1991
).
Mitochondrial activities of phosphagen kinases are not widely distributed in the invertebrates
.
Biol. Bull
180
,
505
–.
Furukohri
T.
,
Okamoto
S.
,
Suzuki
T.
(
1994
).
Evolution of phosphagen kinase. III. Amino acid sequence of arginine kinase from the shrimp Penaeus japonicus
.
Zool. Sci
11
,
229
–.
Geourjon
C.
,
Deleage
G.
(
1995
).
ANTHEPROT 2.0: a three-dimensional module fully coupled with protein sequence analysis methods
.
J. Mol. Graph
13
,
209
–.
Graber
J. H.
,
Cantor
C. R.
,
Mohr
S. C.
,
Smith
T. F.
(
1999
).
In silico detection of control signals: mRNA 3-end-processing sequences in diverse species
.
Proc. Natl. Acad. Sci. USA
96
,
14055
–.
Kotlyar
S.
,
Weihrauch
D.
,
Towle
D. W.
(
1997
).
Nucleotide sequence analysis of arginine kinase in the green shore crab Carcinus maenas
.
Am. Zool
37
,
87
–.
Kozak
M.
(
1991
).
Structural features in eukaryotic mRNAs that modulate the initiation of translation
.
J. Biol. Chem
266
,
19867
–.
Kucharski
R.
,
Maleszka
R.
(
1998
).
Arginine kinase is highly expressed in the compound eye of the honey bee, Apis mellifera
.
Gene
211
,
343
–.
Lucu
Ĉ.
(
1993
).
Ion transport in gill epithelium of aquatic Crustacea
.
J. Exp. Zool
265
,
378
–.
Nealon
D. A.
,
Henderson
A. R.
(
1976
).
The apparent Arrhenius relationships of the human creatine kinase isoenzymes using the Oliver—Rosalki assay
.
Clin. Chim. Acta
66
,
131
–.
Onken
H.
,
Putzenlechner
M.
(
1995
).
A V-ATPase drives active, electrogenic and Na+-independent Clabsorption across the gills of Eriocheir sinensis
.
J. Exp. Biol
198
,
767
–.
Pineda
A.
Jr.
,
Ellington
W. R.
(
1998
).
Immunogold transmission electron microscopic localization of arginine kinase in arthropod mitochondria
.
J. Exp. Zool
281
,
73
–.
Sanger
F.
,
Nicklen
S.
,
Coulson
A. R.
(
1977
).
DNA sequencing with chain terminating inhibitors
.
Proc. Natl. Acad. Sci. USA
74
,
5463
–.
Strong
S. J.
,
Ellington
W. R.
(
1995
).
Isolation and sequence analysis of the gene for arginine kinase from the chelicerate arthropod, Limuluspolyphemus: Insights into catalytically important residues
.
Biochim. Biophys. Acta
1246
,
197
–.
Suzuki
T.
,
Kamidochi
M.
,
Inoue
N.
,
Kawamichi
H.
,
Yazawa
Y.
,
Furukohri
T.
,
Ellington
W. R.
(
1999
).
Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase
.
Biochem. J
340
,
671
–.
Suzuki
T.
,
Kawasaki
Y.
,
Furukohri
T.
,
Ellington
W. R.
(
1997
).
Evolution of phosphagen kinase. VI. Isolation, characterization and cDNA-derived amino acid sequence of lombricine kinase from the earthworm Eisenia foetida and identification of a possible candidate for the guanidine substrate recognition site
.
Biochim. Biophys. Acta
1343
,
152
–.
Towle
D. W.
,
Kays
W. T.
(
1986
).
Basolateral localization of Na++K+-ATPase in gill epithelium of two osmoregulating crabs, Callinectes sapidus and Carcinus maenas
.
J. Exp. Zool
239
,
311
–.
Towle
D. W.
,
Palmer
G. E.
,
Harris
J. L.
III
(
1976
).
Role ofgill Na++K+-dependent ATPase in acclimation of blue crabs(Callinectes sapidus) to low salinity
.
J. Exp. Zool
196
,
315
–.
Towle
D. W.
,
Rushton
M. E.
,
Heidysch
D.
,
Magnani
J. J.
,
Rose
M. J.
,
Amstutz
A.
,
Jordan
M. K.
,
Shearer
D. W.
,
Wu
W. S.
(
1997
).
Sodium—proton antiporter in the euryhaline crab Carcinus maenas: molecular cloning, expression and tissue distribution
.
J. Exp. Biol
200
,
1003
–.
Wallimann
T.
,
Wyss
M.
,
Brdiczka
D.
,
Nicolay
K.
,
Eppenberger
H. M.
(
1992
).
Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis
.
Biochem. J
281
,
21
–.
Weihrauch
D.
,
Towle
D. W.
(
1997
).
Molecular evidence for a V-type H+-ATPase in gills of the euryhaline crabs Carcinus maenas and Callinectes sapidus
.
Am. Zool
37
,
87
–.
Wieczorek
H.
,
Brown
D.
,
Grinstein
S.
,
Ehrenfeld
J.
,
Harvey
W. R.
(
1999
).
Animal plasma membrane energization by proton-motive V-ATPases
.
BioEssays
21
,
637
–.
Wyss
M.
,
Maughan
D.
,
Wallimann
T.
(
1995
).
Re-evaluation of the structure and physiological function of guanidino kinases in fruitfly (Drosophila), sea urchin (Psammechinus miliaris) and man
.
Biochem. J
309
,
255
–.
Zhou
G.
,
Somasundaram
T.
,
Blanc
E.
,
Parthasarathy
G.
,
Ellington
W. R.
,
Chapman
M. S.
(
1998
).
Transition statestructure of arginine kinase: implications for catalysis ofbimolecular reactions
.
Proc. Natl. Acad. Sci. USA
95
,
8449
–.
This content is only available via PDF.