The heat-shock response, the enhanced expression of one or more classes of molecular chaperones termed heat-shock proteins (hsps) in response to stress induced by high temperatures, is commonly viewed as a ‘universal’ characteristic of organisms. We examined the occurrence of the heat-shock response in a highly cold-adapted, stenothermal Antarctic teleost fish, Trematomus bernacchii, to determine whether this response has persisted in a lineage that has encountered very low and stable temperatures for at least the past 14–25 million years. The patterns of protein synthesis observed in in vivo metabolic labelling experiments that involved injection of (35)S-labelled methionine and cysteine into whole fish previously subjected to a heat stress of 10 degrees C yielded no evidence for synthesis of any size class of heat-shock protein. Parallel in vivo labelling experiments with isolated hepatocytes similarly showed significant amounts of protein synthesis, but no indication of enhanced expression of any class of hsp. The heavy metal cadmium, which is known to induce synthesis of hsps, also failed to alter the pattern of proteins synthesized in hepatocytes. Although stress-induced chaperones could not be detected under any of the experimental condition used, solid-phase antibody (western) analysis revealed that a constitutively expressed 70 kDa chaperone was present in this species, as predicted on the basis of requirements for chaperoning during protein synthesis. Amounts of the constitutively expressed 70 kDa chaperone increased in brain, but not in gill, during 22 days of acclimation to 5 degrees C. The apparent absence of a heat-shock response in this highly stenothermal species is interpreted as an indication that a physiological capacity observed in almost all other organisms has been lost as a result of the absence of positive selection during evolution at stable sub-zero temperatures. Whether the loss of the heat-shock response is due to dysfunctional genes for inducible hsps (loss of open reading frames or functional regulatory regions), unstable messenger RNAs, the absence of a functional heat-shock factor or some other lesion remains to be determined.

REFERENCES

Bharadwaj
S.
,
Adnan
A.
,
Ovsenek
N.
(
1999
).
Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo
.
Mol. Cell. Biol
19
,
8033
–.
Bosch
T. C. G.
,
Krylow
S. M.
,
Bode
H. R.
,
Steele
R. E.
(
1988
).
Thermotolerance and synthesis of heat shock proteins: These responses are present in Hydra attenuata but absent in Hydra oligactis
.
Proc. Natl. Acad. Sci. USA
85
,
7927
–.
Carpenter
C. M.
,
Hofmann
G. E.
(
2000
).
Expression of 70kDa heat shock proteins in Antarctic and New Zealand notothenioid fish
.
Comp. Biochem. Physiol
125
,
229
–.
Cocca
E.
,
Ratnayakelecamwasam
M.
,
Parker
S. K.
,
Camardella
L.
,
Ciaramella
M.
,
Di Prisco
G.
,
Detrich
H. W.
(
1997
).
Do the hemoglobinless icefishes have globin genes?
.
Comp. Biochem. Physiol
118
,
1027
–.
DeVries
A. L.
(
1988
).
The role of antifreeze glycopeptides and peptides in the freezing avoidance of Antarctic fishes
.
Comp. Biochem. Physiol
90
,
611
–.
Dietz
T. J.
,
Somero
G. N.
(
1992
).
The threshold induction temperature of the 90-kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (genus Gillichthys)
.
Proc. Natl. Acad. Sci. USA
89
,
3389
–.
Ellis
R. J.
(
1990
).
The molecular chaperone concept
.
Sem. Cell Biol
1
,
1
–.
Feder
M. E.
,
Hofmann
G. E.
(
1999
).
Heat-shock proteins, molecular chaperones and the stress response: evolutionary and ecological physiology
.
Annu. Rev. Physiol
61
,
243
–.
Fields
P. A.
,
Somero
G. N.
(
1998
).
Hot-spots in cold adaptation: Localized increases in conformational flexibility in lactate dehydrogenase A4orthologs of Antarctic notothenioid fishes
.
Proc. Natl. Acad. Sci. USA
95
,
11476
–.
Fink
A.
(
1999
).
Chaperone-mediated protein folding
.
Physiol. Rev
79
,
425
–.
Gellner
K.
,
Praetzel
G.
,
Bosch
T. C.
(
1992
).
Cloning and expression of a heat-inducible hsp70 gene in two species of Hydra which differ in their stress response
.
Eur. J. Biochem
210
,
683
–.
Hartl
F. U.
(
1996
).
Molecular chaperones in cellular protein folding
.
Nature
381
,
571
–.
Hess
M. A.
,
Duncan
R. F.
(
1996
).
Sequence and structure determinants of Drosophila Hsp70 mRNA translation, 5-UTR secondary structure specifically inhibits heat shock protein mRNA translation
.
Nucleic Acids Res
24
,
2441
–.
Hightower
L. E.
(
1980
).
Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides
.
J. Cell. Physiol
102
,
407
–.
Hofmann
G. E.
,
Somero
G. N.
(
1995
).
Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus
.
J. Exp. Biol
198
,
1509
–.
Jedlicka
P.
,
Mortin
M. A.
,
Wu
C.
(
1997
).
Multiple functions of Drosophila heat shock transcription factor in vivo
.
EMBO J
16
,
2452
–.
Kultz
D.
,
Somero
G. N.
(
1995
).
Osmotic and thermal effects on in situ ATPase activity in permeabilized gill epithelial cells of the fish Gillichthys mirabilis
.
J. Exp. Biol
198
,
1883
–.
Lindquist
S.
(
1986
).
The heat shock response
.
Annu. Rev. Biochem
55
,
1151
–.
McMillan
D. R.
,
Xiao
X.
,
Shao
L.
,
Graves
K.
,
Benjamin
I. J.
(
1998
).
Targeted disruption of heat shock transcription factor 1G. E. HOFMANNANDOTHERS2339 Lack of heat-shock response in Antarctic fish abolishes thermotolerance and protection against heat-inducible apoptosis
.
J. Biol. Chem
273
,
7523
–.
Morimoto
R. I.
(
1993
).
Cells in stress: transcriptional activation of heat shock genes
.
Science
259
,
1409
–.
Morimoto
R. I.
(
1998
).
Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones and negative regulators
.
Genes Dev
12
,
3788
–.
Parsell
D. A.
,
Lindquist
S.
(
1993
).
The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins
.
Annu. Rev. Genet
27
,
437
–.
Petersen
R. B.
,
Lindquist
S.
(
1989
).
Regulation of HSP70 synthesis by messenger RNA degradation
.
Cell Regul
1
,
135
–.
Råbergh
C. M. I.
,
Isomaa
B.
,
Eriksson
J. E.
(
1992
).
The resin acids dehydroabietic acid and isopimaric acid inhibit bile acid uptake and perturb potassium transport in isolated hepatocytes from rainbow trout (Oncorhynchus mykiss)
.
Aquat. Toxicol
23
,
169
–.
Shi
Y.
,
Mosser
D. D.
,
Morimoto
R. I.
(
1998
).
Molecular chaperones as HSF1-specific transcriptional repressors
.
Genes Dev
12
,
654
–.
Sidell
B. D.
,
Vayda
M. E.
,
Small
D. J.
,
Moylan
T. J.
,
Londraville
R. L.
,
Yuan
M. L.
,
Rodnick
K. J.
,
Eppley
Z. A.
,
Costello
L.
(
1997
).
Variable expression of myoglobin among the hemoglobinless Antarctic icefishes
.
Proc. Natl. Acad. Sci. USA
94
,
3420
–.
Somero
G. N.
,
DeVries
A. L.
(
1967
).
Temperature tolerance of some Antarctic fishes
.
Science
156
,
257
–.
Tomanek
L.
,
Somero
G. N.
(
1999
).
Evolutionary and acclimation-induced variation in the heat shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography
.
J. Exp. Biol
202
,
2925
–.
Wu
C.
(
1995
).
Heat shock transcription factors: structure and regulation
.
Annu. Rev. Cell Dev. Biol
11
,
441
–.
Zhong
M.
,
Orosz
A.
,
Wu
C.
(
1998
).
Direct sensing of heat and oxidation by Drosophila heat shock transcription factor
.
Mol. Cell
2
,
101
–.
Zou
J.
,
Guo
Y.
,
Guettouche
T.
,
Smith
D. F.
,
Voellmy
R.
(
1998
).
Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1
.
Cell
94
,
471
–.
This content is only available via PDF.