Finlets are small non-retractable fins located on the dorsal and ventral margins of the body between the second dorsal and anal fins and the tail of scombrid fishes. The morphology of the finlets, and finlet kinematics during swimming in a flow tank at speeds of 0.8-3. 0 fork lengths s(−1), were examined in the chub mackerel Scomber japonicus. Functionally, S. japonicus has five dorsal and anal triangular finlets (the fifth finlet is a pair of finlets acting in concert). Slips of muscle that insert onto the base of each finlet indicate the potential for active movement. In animals of similar mass, finlet length and area increased posteriorly. Finlet length, height and area show positive allometry in animals from 45 to 279 g body mass. Summed finlet area was approximately 15 % of caudal fin area. During steady swimming, the finlets typically oscillated symmetrically in the horizontal and vertical planes. Finlet excursions in the x, y and z directions ranged from 1 to 5 mm, increased posteriorly and were independent of speed. The timing of the maximum amplitude of oscillation was phased posteriorly; the phase lag of the maximum amplitude of oscillation was independent of speed. During some periods of gliding, a finlet occasionally moved independently of the body and the other finlets, which indicated active control of finlet movement. The angle of attack of the finlets averaged approximately 0 degrees over a tailbeat, indicating no net contribution to thrust production via classical lift-based mechanisms. However, the timing of finlet movement relative to that of the tail suggests that more posterior finlets may direct some flow longitudinally as the tail decelerates and thereby contribute flow to the developing caudal fin vortex.
Locomotion in scombrid fishes: morphology and kinematics of the finlets of the chub mackerel Scomber japonicus
J.C. Nauen, G.V. Lauder; Locomotion in scombrid fishes: morphology and kinematics of the finlets of the chub mackerel Scomber japonicus. J Exp Biol 1 August 2000; 203 (15): 2247–2259. doi: https://doi.org/10.1242/jeb.203.15.2247
Download citation file:
Advertisement
Cited by
The Integrative Biology of the Heart

We are pleased to welcome submissions to be considered for our upcoming special issue: The Integrative Biology of the Heart, guest edited by William Joyce and Holly Shiels. This issue will consider the biology of the heart at all levels of organisation, across animal groups and scientific fields.
JEB@100: an interview with Monitoring Editor John Terblanche

John Terblanche reveals how he narrowly avoided becoming a sports scientist and why he thinks phenotypic plasticity is the big question currently facing comparative physiologists. Find out more about the series on our Interviews page.
Vision 2024: Building Bridges in Visual Ecology

Early-career researchers can apply for funded places at our Vision 2024: Building Bridges in Visual Ecology. The event is organised by Eleanor Caves, Sonke Johnsen and Lorain Schweikert and being held at Buxted park 10-13 June 2023. Deadline 1 December 2023.
Reconciling the variability in the biological response of marine invertebrates to climate change

Drawing on work in reef-building corals, Zoe Dellaert and Hollie Putnam provide historical context to some of the long-standing challenges in global change biology that constrain our capacity for eco-evolutionary forecasting, as well as considering unresolved questions and future research approaches. Read the full Centenary Review Article here.
Sipping takes no effort for hovering hawkmoths

Hovering takes the most effort so how much energy does sipping require when hawkmoths hover? Next to nothing, apparently. Alexandre Palaoro & colleagues have discovered that the insects’ proboscises are incredibly wettable, drawing nectar along the length with no effort, giving them a free drink on the wing.