Previously, the distribution of ammonia between the intracellular and extracellular compartments has been used to predict a significant depolarisation of the resting membrane potential (E(M)) of white muscle from brown trout (Salmo trutta) exposed to a sub-lethal combination of copper and low pH. However, this prediction is based upon two assumptions (i) a relatively high membrane permeability for the ammonium ion with respect to that for ammonia gas and (ii) that this is unaltered by exposure to copper and low pH. Since there is conflicting evidence in the literature of the validity of these assumptions, in the present study E(M) was directly measured in white muscle fibres of trout exposed to copper and low pH (E(M)=−52.2+/−4.9 mV) and compared with that of unexposed, control animals (E(M)=−86.5+/−2.9 mV) (means +/− s.e.m., N=6). In confirming the predicted depolarisation, these data support the hypothesis of electrophysiological impairment as a factor in the reduction in the swimming performance of trout exposed to these pollutants. In addition, the results of this study support the role of a significant permeability of the muscle membrane to NH(4)(+) in determining the distribution of ammonia in fish.
The resting membrane potential of white muscle from brown trout (Salmo trutta) exposed to copper in soft, acidic water
M.W. Beaumont, E.W. Taylor, P.J. Butler; The resting membrane potential of white muscle from brown trout (Salmo trutta) exposed to copper in soft, acidic water. J Exp Biol 15 July 2000; 203 (14): 2229–2236. doi: https://doi.org/10.1242/jeb.203.14.2229
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3942)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3942)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.